Skip to main content

Advertisement

Log in

Potential of cotton for remediation of Cd-contaminated soils

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The present research was conducted to study the potential of cotton for the remediation of soils contaminated with Cd, to understand the biochemical basis of its tolerance to, and to investigate the plant-microbe interaction in the rhizosphere for enhancement of phytoextraction of Cd. Cotton (Bt RCH-2) was exposed to four Cd levels (0, 50, 100, and 200 mg/kg soil) in a completely randomised design and found that the plant could tolerate up to 200 mg/kg soil. Cd stress increased the total phenol, proline, and free amino acid contents in the plant leaf tissue compared with control but inhibited basal soil respiration, fluorescein diacetate hydrolysis, and activities of several enzymes viz. dehydrogenase, phosphatases, and β-glucosidase in the soil over control. The concentration of Cd in the shoot was less than the critical concentration of 100 µg/g dry weight, and bioconcentration and translocation factors were < 1 to classify the plant as a hyperaccumulator of Cd. This was further confirmed by another experiment in which the cotton plant was exposed various higher levels of Cd (200, 400, 600, 800, and 1000 mg/kg soil). Though the concentration of Cd in the shoot was > 100 µg g −1dw beyond 600 mg Cd/kg soil, the bioconcentration and translocation factors were < 1. The study on plant-microbe (Aspergillus awamori) interaction revealed that the fungus did not affect the absorption of Cd by cotton. It was concluded that the cotton was classified as an excluder of Cd and therefore could be suitable for the phytostabilization of Cd-contaminated soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adam, G., & Duncan, H. (2001). Development of a sensitive and rapid method for the measurement of total microbial activity using fluorescein diacetate (FDA) in a range of soils. Soil Biology & Biochemistry, 33, 943–951.

    CAS  Google Scholar 

  • Adesodun, J. K., Atayese, M. O., Agbaje, T. A., Osadiaye, B. A., Mafe, O. F., & Soretire, A. A. (2010). Phytoremediation potentials of sunflowers (Tithonia diversifolia and Helianthus annus) for metals in soils contaminated with zinc and lead nitrates. Water, Air and Soil Pollution, 207, 195–201.

    CAS  Google Scholar 

  • Aoshima, K. (2012). Itai-Itai disease: Cadmium-induced renal tubular osteomalacia. Nihon Eiseigaku Zasshi, 67(4), 455–463.

    CAS  Google Scholar 

  • APHA (American Public Health Association). (1998). Standard Methods for Examination of Water and Wastewater (20th ed.). Washington.

    Google Scholar 

  • Baker, A. J. M. (1981). Accumulators and excluders—strategies in the response of plants to heavy metals. Journal of Plant Nutrition, 3, 643–654. https://doi.org/10.1080/01904168109362867

    Article  CAS  Google Scholar 

  • Baker, A. J., & Walker, P. L. (1990). Ecophysiology of metal uptake by tolerant plants: Heavy metal tolerance in plants. In A. J. Shaw (Ed.), Evolutionary Aspects (pp. 155–177). Boca Raton, FL: CRC Press.

  • Barceló, J., & Poschenrieder, C. (2003). Phytoremediation: Principles and perspectives. Contributions in Science, 2, 333–344.

    Google Scholar 

  • Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39, 205–207.

    CAS  Google Scholar 

  • Belgis, M., Wijaya, C. H., Apriyantono, A., Kusbiantoro, B., & Yuliana, N. D. (2016). Physicochemical differences and sensory profiling of six lai (Durio kutejensis) and four durian (Durio zibethinus) cultivars indigenous Indonesia. International Food Research Journal, 23(4), 1466–1473.

    CAS  Google Scholar 

  • Binet, M. R., Ma, R., McLeod, C. W., & Poole, R. K. (2003). Detection and characterization of zinc-and cadmium-binding proteins in Escherichia coli by gel electrophoresis and laser ablation-inductively coupled plasma-mass spectrometry. Analytical biochemistry, 318(1), 30–38.

    CAS  Google Scholar 

  • Bray, H. G., & Thorpe, W. V. (1954). Analysis of phenolic compounds of interest in metabolism. Methods of Biochemical Aanalysis, 1, 27–52.

    CAS  Google Scholar 

  • Boularbah, A., Schwartz, C., Bitton, G., Aboudrar, W., Ouhammou, A., & Morel, J. L. (2006). Heavy metal contamination from mining sites in South Morocco: 2. Assessment of metal accumulation and toxicity in plants. Chemosphere, 63(5), 811–817.

    CAS  Google Scholar 

  • Bowles, T. M., Acosta-Martínez, V., Calderón, F., & Jackson, L. E. (2014). Soil enzyme activities, microbial communities, and carbon and nitrogen availability in organic agroecosystems across an intensivelymanaged agricultural landscape. Soil Biology Biochemistry, 68, 252–262.

    CAS  Google Scholar 

  • Brown, S. L., Chaney, R. L., Angle, J. S., & Baker, A. J. M. (1994). Phytoremediation potential of Thlaspi caerulescens and bladder campion for zinc-contaminated and cadmium-contaminated soil. Journal of Environmental Quality, 23, 1151–1157.

    CAS  Google Scholar 

  • Cai, Y., & Braids, O. (2002). Biogeochemistry of environmentally important elements. ACS Symposium Series 835, American Chemical Society, Oxford University Press, Washington, DC.

  • Caravaca, F., Lozano, Z., Rodríguez-Caballero, G., & Roldán, A. (2017). Spatial shifts in soil microbial activity and degradation of pasture cover caused by prolonged exposure to cement dust. Land Degradation and Development, 28, 1329–1335.

    Google Scholar 

  • Casida, L., Klein, D., & Santoro, T. (1964). Soil Dehydrogenase Activity. Soil Science, 98, 371–376.

    CAS  Google Scholar 

  • Chang, A. C., Granato, T. C., & Page, A. L. (1992). A methodology for establishing phytotoxicity criteria for chromium, copper, nickel and zinc in agricultural land application of municipal sewage sludges. Journal of Environmental Quality, 1, 521–536.

    Google Scholar 

  • Chen, C., & Wang, J. L. (2007). Influence of metal ionic characteristics on their biosorption capacity by Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 74, 911–917.

    CAS  Google Scholar 

  • Chen, H. D., He, Y. X., Guo, L. S., Zhao, R. Y., Li, Y. J., Wu, J. T., Peng, S. J., & Zhang, Z. G. (2018). Effects of cadmium stress on physiological and biochemical characteristics and agronomic traits of three upland cotton cultivars. Cotton Science, 30, 62–70.

    Google Scholar 

  • Chen, Z. F., Zhao, Y., Fan, L. D., Xing, L. T., & Yang, Y. J. (2015). Cadmium (Cd) localization in tissues of cotton (Gossypium hirsutum L.) and its phytoremediation potential for Cd-contaminated soils. Bulletin of Environmental Contamination and Toxicology, 95, 784–789.

    CAS  Google Scholar 

  • Dubey, G., Kollah, B., Ahirwar, U., Mandal, A., Thakur, J. K., Patra, A. K., & Mohanty, S. R. (2017). Phylloplane bacteria of Jatropha curcas: Diversity, metabolic characteristics, and growth-promoting attributes towards vigor of maize seedling. Canadian Journal of Microbiology, 63(10), 822–833.

    CAS  Google Scholar 

  • Dushenkov, V., Kumar, P., Motto, H., & Raskin, I. (1995). Rhizofiltration—The use of plants to remove heavy-metals from aqueous streams. Environmental Science & Technology, 29, 1239–1245.

    CAS  Google Scholar 

  • Eivazi, F., & Tabatabai, M. A. (1988). Glucosidases and galactosidases in soils. Soil Biology and Biochemistry, 20(5), 601–606.

    CAS  Google Scholar 

  • Ghosh, M., & Singh, S. P. (2005). A review on phytoremediation of heavy metals and utilization of its by-products. Applied Ecology Environmental Research, 3, 1–18.

    Google Scholar 

  • Gil-Sotres, F., Trasar-Cepeda, C., Leirós, M. C., & Seoane, S. (2005). Different approaches to evaluating soil quality using biochemical properties. Soil Biology & Biochemistry, 37, 877–887.

    CAS  Google Scholar 

  • Gomez, K. A., & Gomez, A. (1984). Statistical procedures for agricultural research (2nd ed.). John Wiley & Sons.

    Google Scholar 

  • Guo, L. S., Chen, H. D., He, Y. X., He, S. J., Li, F., Zhang, Z. G., & Li, Y. (2015). Preliminary results on cotton cultivars screening for the high accumulation of cadmium. China Cotton, 42, 14–16.

    Google Scholar 

  • Guo, L. S., He, S. J., & Li, J. L. (2016). Research progress on planting technology of cotton as a substitute crop in the polluted area by Cd. China Cotton, 43, 5–8.

    Google Scholar 

  • Hall, J. L. (2002). Cellular mechanisms for heavy metal detoxification and tolerance. Journal of Experimental Botany, 53, 1–11.

    CAS  Google Scholar 

  • Hasaneen, M. N. A. G., Abdel-aziz, H. M. M., & Omer, A. M. (2016). Effect of foliar application of engineered nanomaterials: carbon nanotubes NPK and chitosan nanoparticles NPK fertilizer on the growth of French bean plant. Biochemistry and Biotechnology Research, 4(4), 68–76.

    Google Scholar 

  • Henson, T. M., Cory, W., & Rutter, M. T. (2013). Extensive variation in cadmium tolerance and accumulation among populations of Chamaecrista fasciculate. PLoS One, 8, e63200.

    CAS  Google Scholar 

  • Heuer, B. (2010). “Role of proline in plant response to drought and salinity,” in Handbook of Plant and Crop Stress, 3rd ed. Ed. Pessarakli, A. (Boca Raton: CRC Press), 213–238.

  • Jackson, M. L. (1973). Soil chemical analysis. Prentice Hall of Englewood cliffs, New Jersey, USA.

  • Janouskova, M., Pavlikova, D., & Vosatka, M. (2006). Potential contribution of arbuscular mycorrhiza to cadmium immobilisation in soil. Chemosphere, 65(11), 1959–1965.

    CAS  Google Scholar 

  • Khan, S., Hesham, A. E. L., Qiao, M., Rehman, S., & He, J. Z. (2010). Effects of Cd and Pb on soil microbial community structure and activities. Environmental Science and Pollution Research, 17(2), 288–296.

    CAS  Google Scholar 

  • Leita, L., Nobili, M. D., Mondini, C., & Garcia, M. T. B. (1993). Response of Leguminosae to cadmium exposure. Journal of Plant Nutrition, 16, 200l–2012.

    Google Scholar 

  • Levitt, J. (1972). Responses of plants to environmental stresses. Academic Press.

    Google Scholar 

  • Li, C., Zheng, C., Zhou, K., Han, W., Tian, C., Ye, S., et al. (2020). Toleration and accumulation of cotton to heavy metal-potential use for phytoremediation. Soil and Sediment contamination: An International Journal, 29(5), 516–531.

    CAS  Google Scholar 

  • Li, F. D., Yu, Z. N., & He, S. J. (1996). Experimental technique of agricultural microbiology. 122–123.

  • Li, J. T., Baker, A. J. M., Ye, Z. H., Wang, H. B., & Shu, W. S. (2012). Phytoextraction of Cd-contaminated soils: Current status and future challenges. Critical Reviews in Environmental Science and Technology, 42, 2113–2152.

    CAS  Google Scholar 

  • Li, Y., & Liu, F. C. (2015). Heavy metal concentrations and enzymatic activities in the functional zone sediments of Haizhou Bay, Lianyungang, Jiangsu, China. Environmental Monitoring and Assessment, 187, 660. https://doi.org/10.1007/s10661-015-4892-9

    Article  CAS  Google Scholar 

  • Liu, L. T., Sun, H. C., Chen, J., Zhang, Y. J., Wang, X. D., Li, D. X., & Li, C. D. (2016). Cotton plants adapted to cadmium stress by enhanced activities of protective enzymes. Plant, Soil and Environment, 62, 80–85.

    CAS  Google Scholar 

  • Liu, S., Yang, Z., Wang, X., Zhang, X., Guo, R., & Liu, X. (2007). Effects of Cd and Pb pollution on soil enzymatic activities and soil microbiota. Frontiers of Agriculture in China, 1, 85–89.

    Google Scholar 

  • Ludvíková, M., & Griga, M. (2019). Transgenic fiber crops for phytoremediation of metals and metalloids. In : Transgenic plant technology for remediation of toxic metals and metalloids Academic Press. pp. 341–358. https://doi.org/10.1016/B978-0-12814389-6.00016-X

  • Lutts, S., Kinet, J. M., & Bouharmont, J. (1996). NaCl-induced senescence in leaves of rice (Oryza sativa L) cultivars differing in salinity resistance. Annals of Botany, 78, 389–398.

    CAS  Google Scholar 

  • Ma, X. F., Zheng, C. S., Li, W., Ai, S. Y., Zhang, Z. G., Zhou, X. J., et al. (2017). Potential use of cotton for remediating heavy metal-polluted soils in southern China. Journal of Soils and Sediments, 1–7.

  • Manquián-Cerda, K., Escudey, M., Zúñiga, G., Arancibia-Miranda, N., Molina, M., & Cruces, E. (2016). Effect of cadmium on phenolic compounds, antioxidant enzyme activity and oxidative stress in blueberry (Vaccinium corymbosum L.) plantlets grown in vitro. Ecotoxicology and Environmental Safety, 133, 316–326.

    Google Scholar 

  • Marques, A. P. G. C., Oliveira, R. S., Rangel, A. O. S. S., & Castro, P. M. L. (2006). Zinc accumulation in Solanum nigrumis enhanced by different arbuscular mycorrhizal fungi. Chemosphere, 65(7), 1256–1263.

    CAS  Google Scholar 

  • Mbuthia, L. W., Acosta-Martínez, V., DeBruyn, J., Schaeffer, S., Tyler, D., Odoi, E., Mpheshea, M., Walker, F., & Eash, N. (2015). Long term tillage, cover crop, and fertilization effects on microbial community structure, activity: Implications for soil quality. Soil Biology Biochemistry, 89, 24–34.

    CAS  Google Scholar 

  • Meers, E., Hopgood, M., Lesage, E., Vervaeke, P., Tack, F. M. G., & Verloo, M. (2004). Enhanced Phytoextraction : In Search for EDTA alternatives. International Journal of Phytoremdiation, 6(2):95–109.

  • Mellem, J. J., Baijnath, H., & Odhav, B. (2012). Bioaccumulation of Cr, Hg, As, Pb, Cu and Ni with the ability for hyperaccumulation by Amaranthus dubius. African Journal of Agricultural Research, 7, 591–596.

    Google Scholar 

  • Merino, C., Godoy, R., & Matus, F. (2016). Soil enzymes and biological activity at different levels of organic matter stability. Journal of Soil Science and Plant Nutrition, 16(1), 14–30.

    CAS  Google Scholar 

  • Mganga, N., Manoko, M. L. K., & Rulangaranga, Z. K. (2011). Classification of plants according to their heavy metal content around North Mara gold mine, Tanzania: Implication for phytoremediation. Tanzania Journal of Science, 37(1), 109–119.

    Google Scholar 

  • Michalak, A. (2006). Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Polish Journal of Environmental Studies, 15, 523–530.

    CAS  Google Scholar 

  • Moore, S., & Stein, W. H. (1948). Photometric methods for use in the chromatography of amino acids. Journal of Biological Chemistry, 176, 367–388.

    CAS  Google Scholar 

  • Newman, M. C., & Unger, M. A. (2003). Fundamentals of Ecotoxicology. Lewis Publishers, 2nd Ed., Boca Raton, FL.

  • Padmavathiamma, P. K., & Li, L. Y. (2007). Phytoremediation technology: Hyperaccumulation metals in plants. Water Air & Soil Pollution, 184, 105–126.

    CAS  Google Scholar 

  • Patil, P. G., Gurjar, R. M., Shaikh, A. J., Balasubramanya, R. H., Paralikar, K. M., & Varadarajan, P. V. (2007). Cotton plant stalk—An alternative raw material to board industry. https://wcrc.confex.com/wcrc/2007/techprogram/P1506.HTM

  • Pilon-Smits, E. (2005). Phytoremediation. Annual Review of Plant Biology, 56, 15–39.

    CAS  Google Scholar 

  • Rajapaksha, R. M. C. P., Tobor-Kapłon, M. A., & Bååth, E. (2004). Metal toxicity affects fungal and bacterial activities in soil differently. Applied and Environmental Microbiology, 70, 2966–2973.

    CAS  Google Scholar 

  • Ramana, S., Biswas, A. K., Singh, A. B., Kumar, A., Ahirwar, N. K., Prasad, R. D., & Srivastava, S. (2015a). Potential of Mauritius hemp (Furcraea gigantea Vent.) for the remediation of chromium contaminated soils. International Journal of Phytoremediation, 17(7), 709–715.

    CAS  Google Scholar 

  • Ramana, S., Biswas, A. K., Singh, A. B., Kumar, A., Ahirwar, N. K., & Subba Rao, A. (2015b). Tolerance of ornamental succulent plant crown of thorns (Euphorbia milli) to chromium and its remediation. International Journal of Phytoremediation, 17(4), 363–368.

    CAS  Google Scholar 

  • Ramana, S., Biswas, A. K., Singh, A. B., Kumar, A., & Srivastava, S. (2016). Potential of mestha (Hibiscus sabdarifa) for remediation of soils contaminated with chromium. Journal of Natural Fibers, 13(5), 597–602. https://doi.org/10.1080/15440478.2015.1093440

    Article  CAS  Google Scholar 

  • Ramana, S., Srivastava, S., Biswas, A. K., Ajay, K., Singh, A. B., Singh, D., & Rajput, P. S. (2017). Assessment of century plant (Agave americana) for remediation of chromium contaminated soils. Proceedings of National Academy of Sciences, India, Section. B Biological Sciences, 87, 1159–1165.

    CAS  Google Scholar 

  • Ramana, S., Tripathi, A. K., Kumar, A., Dey, P., Saha, J. K., & Patra, A. K. (2021a). Phytoremediation of soils contaminated with cadmium by Agave americana. Journal of Natural Fibers, 1–9https://doi.org/10.1080/15440478.2020.1870642

  • Ramana, S., Tripathi, A. K., Kumar, A., Dey, P., Saha, J. K., & Patra, A. K. (2021b). Evaluation of Furcraea foetida (L.) Haw. for phytoremediation of cadmium contaminated soils. Environmental Science and Pollution Research, 1–5. https://doi.org/10.1007/s11356-021-12534-4

  • Rascio, N., Della, V. F., La, R. N., Barbato, R., Pagliano, C., Raviolo, M., Gonnelli, C., & Gabbrielli, R. (2008). Metal accumulation and damage in rice (cv. Vialone nano) seedlings exposed to cadmium. Environmental and Experimental Botany, 62, 267–278.

    CAS  Google Scholar 

  • Rascio, N., & Navari-Izzo, F. (2011). Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting? Plant Science, 180, 169–181.

    CAS  Google Scholar 

  • Tabatabai, M. A., & Bremner, J. M. (1969). Use of p-nitrophenyl phosphate for assay soil phosphatase activity. Soil Biology & Biochemistry, 1, 301–307.

    CAS  Google Scholar 

  • Tendon, P. K., & Srivastava, M. (2004). Effect of cadmium and nickel on metabolism during early stages of growth in gram (Cicer arietinum L.) seeds. Indian Journal of Agricultural Biochemistry, 17, 31–34.

    Google Scholar 

  • Terauds, K. (2019). https://unctad.org/en/pages/newsdetails.aspx: India hows cotton 'waste' can provide clean energy and income (11 March 2019)

  • Wang, X., Wu, X., Ma, L., Zhao, D., & Li, Y. E. (2012). Antioxidase reaction of cotton seedling by lead and cadmium stress. Jiangsu Agricultural Sciences, 40, 105–107.

    CAS  Google Scholar 

  • Weyens, N., van der Lelie, D., Taghavi, S., Newman, L., & Vangronsveld, J. (2009). Exploiting plant-microbe partnerships to improve biomass production and remediation. Trends in Biotechnology, 27(10), 591–598.

    CAS  Google Scholar 

  • Wu, F., Wu, H., Zhang, G. P., & Bachir, D. M. L. (2004a). Differences in growth and yield in response to cadmium toxicity in cotton genotypes. Journal of Plant Nutrition and Soil Science, 167, 85–90.

    CAS  Google Scholar 

  • Wu, H., Wu, F., Zhang, G., Dango, M., & Bachir, L. (2004b). Effect of cadmium on uptake and translocation of three micro elements in cotton. Journal of Plant Nutrition, 27, 2019–2032.

    CAS  Google Scholar 

  • Wyszkowska, J., Boros, E., & Kucharsk, J. (2007). Effect of interactions between nickel and other heavy metals on the soil microbiological properties. Plant Soil and Environment, 53(12), 544–552.

    CAS  Google Scholar 

  • Xu, Y., Seshadri, B., Bolan, N., Sarkar, B., Ok, Y. S., Zhang, W., Rumpel, C., Sparks, D., Farrell, M., Hall, T., & Dong, Z. (2019). Microbial functional diversity and carbon use feedback in soils as affected by heavy metals. Environmental International, 125, 478–488.

    CAS  Google Scholar 

  • Yadav, S., & Srivastava, J. (2014). Phytoremediation of cadmium toxicity by Brassica spp: A review. International Journal of Biology and Biological Sciences, 5, 047–052.

    Google Scholar 

  • Yang, Z. P., Hao, J. M., Bu, Y. S., Gao, Z. Q., & Miao, G. Y. (2011). Effects of Cd stress on Cd accumulation in organs and rhizospheric soil characteristics with five plants. Journal of Soil and Water Conservation, 25, 186–192.

    Google Scholar 

  • Yong, C., & Ma, L. Q. (2002). Metal tolerance, accumulation, and detoxification in plants with emphasis on Arsenic in terrestrial plants. In: Biogeochemistry of Environ-mentally Important Trace Elements. American Chemical Society, 95–114.

  • Yu, R., Li, D., Du, X., Xia, S., Liu, C., & Shi, G. (2017). Comparative transcriptome analysis reveals key cadmium transport-related genes in roots of two pak choi (Brassica rapa L. ssp. chinensis) cultivars. BMC Genomics, 18(1), 587.

    Google Scholar 

  • Yuan, J., Zhang, N., Huang, Q., Raza, W., Li, R., Vivanco, J. M., & Shen, Q. (2015). Organic acids from root exudates of banana help root colonization of PGPR strain Bacillus amyloliquefaciens NJN-6. Scientific Reports, 5(1), 1–8.

    Google Scholar 

  • Zheng, L., Li, Y., Shang, W., Dong, X., Tang, Q., & Cheng, H. (2019). The inhibitory effect of cadmium and/or mercury on soil enzyme activity, basal respiration, and microbial community structure in coal mine–affected agricultural soil. Annals of Microbiology, 69(8), 849–859.

    CAS  Google Scholar 

  • Zhu, X. F., Zheng, C., Hu, Y. T., Jiang, T., Liu, Y., Dong, N. Y., Yang, J. L., & Zheng, S. J. (2011). Cadmium-induced oxalate secretion from root apex is associated with Cd exclusion and resistance in Lycopersicon esculentum. Plant, Cell and Environment, 34, 1055–1064.

    CAS  Google Scholar 

  • Zhuang, P., Yang, Q. W., Wang, H. B., & Shu, W. S. (2007). Phytoextraction of heavy metals by eight plant species in the field. Water, Air, & Soil Pollution, 184, 235–242.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

S. Ramana: Conceptualization, Conducting the experiment; Writing of the manuscript—review and editing A. K. Tripathi: Soil and plant analysis; Ajay: Photosynthesis and leaf area measurement; A. B. Singh: Determination of biochemical parameters, viz., total phenols, free amino acids, and proline; K. Bharati: Estimation of Total heterotrophs, actinomycetes, and N2 fixers β glucosidase activity; organic acids; Asha Sahu: Determination of soil biological parameters and plant-microbe interaction; P. S. Rajput: Physico-chemical properties of soil and determination of soil physiological parameters; Statistical analysis; J. K.Saha: Writing—review and editing; Sanjay Srivastava: Review and editing; Pradip Dey: Review and editing; A. K. Patra: Conceptualization, Methodology, Writing—review and editing.

Corresponding author

Correspondence to Sivakoti Ramana.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramana, S., Tripathi, A.K., Kumar, A. et al. Potential of cotton for remediation of Cd-contaminated soils. Environ Monit Assess 193, 186 (2021). https://doi.org/10.1007/s10661-021-08976-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-08976-5

Keywords

Navigation