Skip to main content

Advertisement

Log in

Assessment of heavy metal pollution in the agricultural soils, plants, and in the atmospheric particulate matter of a suburban industrial region in Dhaka, Bangladesh

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Unplanned industrialization and improper management of wastes and gases into open surfaces are affecting the agricultural lands causing heavy metal pollution. This study monitored a suburban industrial zone located beside the Dhaka Export Processing Zone (DEPZ) at the Dhaka district in Bangladesh. We studied the heavy metal (Fe, Mn, Cr, Cu, Ni, Co, Zn, Pb, and Cd) concentration in the agricultural soils, plants, and in the atmospheric particulate matter (PM). The soils were found moderately contaminated with Fe, Cu, Ni, Co, and Zn and less contamination with Mn, Cr, Pb, and Cd. The enrichment factor (EF) and pollution load index (PLI) concluded a moderate level of soil pollution in this region. Besides, the plant samples showed an excess level of Cr and a similar level of Cu, Ni, Co, Zn, Pb, and Cd compared with the levels of industrial polluted sites of Bangladesh. The atmospheric PM analysis showed the presence of Fe, Mn, Cu, Ni, Zn, and Pb metals. The EF showed the anthropogenic origin of Mn and Ni in the atmospheric PM. The statistical correlation (r < 0.0001) of soil and plant heavy metals showed the possibility of transfer of metals from soil to plant which will cause the increase of pollution intensity. Overall, this agricultural region became an intermediate pollution zone. This study will help the decision-maker become conscious of heavy metal pollution in the suburban regions to monitor agricultural lands from anthropogenic pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abrahim, G. M. S., & Parker, P. J. (2008). Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand. Environmental Monitoring and Assessment, 136(1–3), 227–238.

    CAS  Google Scholar 

  • Ahmad, J. U., & Goni, M. A. (2010). Heavy metal contamination in water, soil, and vegetables of the industrial areas in Dhaka, Bangladesh. Environmental Monitoring and Assessment, 166, 347–357. https://doi.org/10.1007/s10661-009-1006-6.

    Article  CAS  Google Scholar 

  • Alloway, A. J. (2004). Contamination of soils in domestic gardens and allotments: a brief overview. Land Contamination & Reclamation., 12(3), 179–188.

    Article  Google Scholar 

  • Arora, B. R., Azad, A. S., Singh, B., & Shekhon, G. S. (1985). Pollution potential of municipal wastewaters of Ludhiana, Punjab. Indian Journal Ecological, 12(1), 1–7.

    CAS  Google Scholar 

  • Arora, M. B., Kiran, A., Rani, S., Rani, B. K., & Mittal, M. (2008). Heavy metal accumulation in vegetables irrigated with water from different sources. Food Chemistry, 111, 811–815. https://doi.org/10.1016/j.foodchem.2008.04.049.

    Article  CAS  Google Scholar 

  • Beidokhti, M. Z., Naeeni, S. T., & AbdiGhahroudi, M. S. (2019). Biosorption of nickel (II) from aqueous solutions onto pistachio hull waste as a low-cost biosorbent. Civil Engineering Journal, 5(2). https://doi.org/10.28991/cej-2019-03091259.

  • Bowen, H. J. M. (1966). Trace elements in Bio Chemistry (p. 241p). London: Academia Press.

    Google Scholar 

  • Breckle, S. W., & Kahle, H. (1992). Effect of toxic metals (Cd, Pb) on growth and mineral nutrition of beech (Fagus sylvatica L.). Vegetation, 101, 43–53.

    Article  Google Scholar 

  • Chattopadhyay, S., Gupta, S., & Saha, R. N. (2010). Spatial and temporal variation of urban air quality: a GIS approach. Journal of Environmental Protection, 1(03), 264–277. https://doi.org/10.4236/jep.2010.13032.

    Article  CAS  Google Scholar 

  • Chen, J., Wei, F., Zheng, C., Wu, Y., & Adriano, D. C. (1991). Background concentrations of elements in soils of China. Water, Air, and Soil Pollution, 57-58, 699–712.

    Article  CAS  Google Scholar 

  • Chesselet, B. M. P. R. (1979). Variable influence of atmospheric flux on the trace metal chemistry of oceanic suspended matter. Earth and Planetary Science Letters, 42, 398–411.

    Google Scholar 

  • Cho, H., Oh, D., & Kim, K. (2005). A study on removal characteristics of heavy metals from aqueous solution by fly ash. Journal of Hazardous Materials, 127(1–3), 187–195. https://doi.org/10.1016/j.jhazmat.2005.07.019.

    Article  CAS  Google Scholar 

  • Cohen, D. D. (1998). Characterization of atmospheric fine particle using IBA techniques. Nuclear Instruments & Methods, 136, 14–22. https://doi.org/10.1016/S0168-583X(97)00658-7.

    Article  Google Scholar 

  • Dogheim, S. M., Ashraf, E. I. M. M., Alla, S. A. G., Khorshid, M. A., & Fahmy, S. M. (2004). Pesticides and heavy metal levels in Egyptian leafy vegetables and some aromatic medicinal plants. Food Additives and Contaminants, 21, 323–330. https://doi.org/10.1080/02652030310001656361.

    Article  CAS  Google Scholar 

  • Duruibe, J. O., Ogwuegbu, M. O. C., & Egwurugwu, J. N. (2007). Heavy metal pollution and human biotoxic effects. International Journal of Physical Sciences, 2(5), 112–118.

    Google Scholar 

  • Ennaji, W., Barakat, A., Baghdadi, E. M., et al. (2020). Heavy metal contamination in agricultural soil and ecological risk assessment in the northeast area of Tadla Plain, Morocco. Journal of Sedimentary Environments, 5, 307–320. https://doi.org/10.1007/s43217-020-00020-9.

    Article  Google Scholar 

  • Fenu, G., & Malloci, F. M. (2020). DSS LANDS: a decision support system for agriculture in Sardinia. High Tech. Innova. J, 1, 3. https://doi.org/10.28991/HIJ-2020-01-03-05.

  • Ferronato, N., & Torretta, V. (2019). Waste mismanagement in developing countries: a review of global issues. International Journal of Environmental Research and Public Health, 16(6), 1060. https://doi.org/10.3390/ijerph16061060.

    Article  CAS  Google Scholar 

  • Greenland, D. J., Hayes, M. H. B., (1981). The chemistry of soil processes (eds). John Wiley and Sons Ltd. Pp. 593-619.

  • Gupta, N., Khan, D. K., & Santra, S. C. (2008). An assessment of heavy metal contamination in vegetables grown in wastewater-irrigated areas of Titagarh, West Bengal, India. Bulletin of Environmental Contamination and Toxicology, 80, 115–118. https://doi.org/10.1007/s00128-007-9327-z.

    Article  CAS  Google Scholar 

  • Gupta, V. K., & Potalia, B. S. (1989). Concentration of Mn, Fe, Cu, Mg, N and P in wheat in Cd and Zn polluted soil. Haryana Univ. J. Res., 19(1), 37–44.

    Google Scholar 

  • Hakanson, L. (1980). Ecological risk index for aquatic pollution control. A sedimentological approach. Water Research, 14, 975–1001.

    Article  Google Scholar 

  • Hassi, U., Hossain, M. T., & Huq, S. M. I. (2017). Mitigating arsenic contamination in rice plants with an aquatic fern, Marsilea minuta. Environmental Monitoring and Assessment, 189, 550. https://doi.org/10.1007/s10661-017-6270-2.

    Article  CAS  Google Scholar 

  • He, Z. L., Yang, X. E., & Stoffella, P. J. (2005). Trace elements in agroecosystems and impacts on the environment. Journal of Trace Elements in Medicine and Biology, 19(2–3), 125–140.

    Article  CAS  Google Scholar 

  • Hossain, M. T., Hassi, U., & Huq, S. M. I. (2018). Assessment of concentration and toxicological (cancer) risk of lead, cadmium and chromium in tobacco products commonly available in Bangladesh. Toxicology Reports, 5, 897–902. https://doi.org/10.1016/j.toxrep.2018.08.019.

    Article  CAS  Google Scholar 

  • Hussain, M. R., & Abed, B. S. (2019). Simulation and assessment of groundwater for domestic and irrigation uses. Civil Engineering Journal, 5, 9. https://doi.org/10.28991/cej-2019-03091379.

    Article  Google Scholar 

  • Ihedioha, J. N., Ukoha, P. O., & Ekere, N. R. (2017). Ecological and human health risk assessment of heavy metal contamination in soil of a municipal solid waste dump in Uyo, Nigeria. Environmental Geochemistry and Health, 39, 497–515.

    Article  CAS  Google Scholar 

  • Islam, M., & Hasan, H. (2020). Generation of IDF equation from catchment delineation using GIS. Civil Engineering Journal, 6, 3. https://doi.org/10.28991/cej-2020-03091490.

    Article  Google Scholar 

  • Islam, M. D., Hasan, M. M., Rahaman, A., Haque, P., Islam, M. S., & Rahman, M. M. (2020). Translocation and bioaccumulation of trace metals from industrial effluent to locally grown vegetables and assessment of human health risk in Bangladesh. SN Applied Science, 2, 1315. https://doi.org/10.1007/s42452-020-3123-3.

    Article  CAS  Google Scholar 

  • Islam, M. F., Majumder, S. S., Mamun, A. A., Khan Md, B., Rahman, M. A., & Salam, A. (2015). Trace metal concentrations at the atmosphere particulate matters in the Southeast Asian mega city (Dhaka, Bangladesh). Open Journal of air Pollution, 4(2), 86–98. https://doi.org/10.4236/ojap.2015.42009.

    Article  Google Scholar 

  • Islam, M. M., Karim, M. R., Zheng, X., & Li, X. (2018). Heavy metal and metalloid pollution of soil, water and foods in Bangladesh: a critical review. International Journal of Environmental Research and Public Health, 15(12), 2825. https://doi.org/10.3390/ijerph15122825.

    Article  CAS  Google Scholar 

  • Jackson, A. P., and Alloways, B. J., (1962). The transfer of cadmium from agricultural soils to the human food chain “in Biogeochemistry of trace metals”. Advances in trace substance research. D. C. Adriano, Ed. Boca Raton: CRC press Inc. Pp. 109-158.

  • Kabata-Pendias, A., & Pendias, H. (2001). Trace metals in soils and plants (3rd ed.). Boca, Raton, Fl: CRC Press.

    Google Scholar 

  • Kanmani, S., & Gandhimathi, R. (2012). Assessment of heavy metal contamination in soil due to leachate migration from an open dumping site. Applied Water Science, 3, 193–205.

    Article  Google Scholar 

  • Kashem, M. A., & Singh, B. R. (1999). Heavy metal contamination of soil and vegetation in the vicinity of industries in Bangladesh. Water, Air, & Soil Pollution, 115, 347–361. https://doi.org/10.1023/A:1005193207319.

    Article  CAS  Google Scholar 

  • Liu, W. H., Zhao, J. Z., Ouyang, Z. Y., Soderlund, L., & Liu, G. H. (2005). Impacts of sewage irrigation on heavy metals distribution and contamination. Environmental Intel, 31, 805–812.

    Article  CAS  Google Scholar 

  • Makino, T, Luo, Y., Wu, L., Sakurai, Y, Maejima, I., Akahane, Arao, T., (2010). Heavy metal pollution of soil and risk alleviation methods based on soil chemistry. Pedologist. 38-49.

  • Mondol, M. N., Khaled, M., Chamon, A. S., & Ullah, S. M. (2014). Trace metal concentration in atmospheric aerosols in some city areas of Bangladesh. Bangladesh J. of Scientific and Industrial Research, 49, 263–270. https://doi.org/10.3329/bjsir.v49i4.22630.

    Article  CAS  Google Scholar 

  • Muller, G. (1969). Index of geoaccumulation in sediments of the Rhine river. Geochemical Journal, 2, 108–118.

    Google Scholar 

  • Mwegoha, W. J. S., & Kihampa, C. (2010). Heavy metal contamination in agricultural soils and water in Dares Salaam city. Tanzania. African Journal of Environmental Science Technology, 4(11), 763–769.

    CAS  Google Scholar 

  • Naeth, M. A., & Wilkinson, S. R. (2008). Lichens as bio-monitors of air quality around a diamond mine. Northwest Territories. Canadian J. Environ. Qual., 37, 1675–1684.

    Article  CAS  Google Scholar 

  • Naveedullah, M. Z. H., Chunna, Y., Hui, S., Dechao, D., Chaofeng, S., Liping, L., & Yingxu, C. (2013). Risk assessment of heavy metals pollution in agricultural soils of Siling reservoir watershed in Zhejiang Province, China. BioMed Research International, 2013, 590306–590310. https://doi.org/10.1155/2013/590306.

    Article  CAS  Google Scholar 

  • Patel, P. M., Wallence, A., & Mueller, T. R. (1976). Some effects of Cu, Co, Cd, Zn, Ni and Cr on growth and mineral element concentration in Chrysanthemum. Journal of the American Society for Horticultural Science, 101(5), 553–556.

    CAS  Google Scholar 

  • Pierzynski, G. M., Sims, J. T., Vance, G. F., (2000). Soils and environmental quality. (2nded.) CRC Press. London.

  • Rehnuma, M., Islam, M. S., Meghla, N. T., & Kabir, M. H. (2016). Investigation of water quality from Bangshi River at Tangail in Bangladesh. Journal of Science and Technology, 6(1 & 2), 153–160.

    Google Scholar 

  • Salam, A., Bauer, H., Kassin, K., Ullah, S. M., & Puxbaum, H. (2003). Aerosol chemical characteristics of a mega-city in Southeast Asia (Dhaka, Bangladesh). Atmospheric Environment, 37, 2517–2528. https://doi.org/10.1016/S1352-2310(03)00135-03.

    Article  CAS  Google Scholar 

  • Salam, A., Hossain, T., Siddique, M. N. A., & Shafiqul, A. M. (2008). Characteristics of atmospheric trace gases, particulate matter, and heavy metal pollution in Dhaka, Bangladesh. Air Quality, Atmosphere and Health, 1, 101–109. https://doi.org/10.1007/s11869-008-0017-8.

    Article  CAS  Google Scholar 

  • Sarkunan, V., Misra, A. K., & Nayar, P. K. (1989). Interaction of Zn, Cu, and Ni in soil on yield and metal content in rice. Journal of Environmental Science and Health, 24(5), 459–466.

    Google Scholar 

  • Shammi, S. A., & Meng, Q. (2020). Use time series NDVI and EVI to develop dynamic crop growth metrics for yield modeling. Journal of Ecological Indicators, 107124, 107124. https://doi.org/10.1016/j.ecolind.2020.107124.

    Article  Google Scholar 

  • Shammi, S. A., Salam, A., & Khan, A. H. (2016a). Assessment of metal contamination in water of Bangshi River. Bangladesh Journal Soil Science, 38(1), 27–35.

    Google Scholar 

  • Shammi S. A., Salam, A., Khan, A. H. (2016b). Governance and development: changing dynamics and shifting agendas; As-Saber, S., Ahmed, A. F. (Ed.), Enrichment of nutrient status of water-soil systems caused by industrial effluents. Osder Publication, 24/2 Eskaton Garden, Dhaka-1000, Bangladesh. ISBN: 978-984-92653-1-3.

  • Sharma, R. K., Agrawal, M., & Marshall, F. (2007). Heavy metal contamination of soil and vegetables in suburban areas of Varanasi, India. Ecotoxicology and Environmental Safety, 66, 258–266. https://doi.org/10.1016/j.ecoenv.2005.11.007.

    Article  CAS  Google Scholar 

  • Shohel, M., Kistler, M., Rahman, M. A., Kasper-Giebl, A., Reid, J. S., & Salam, A. (2018). Chemical characterization of PM2.5 collected from a rural coastal island of the Bay of Bengal (Bhola, Bangladesh). Environmental Science and Pollution Research, 25, 4558–4569. https://doi.org/10.1007/s11356-017-0695-6.

    Article  CAS  Google Scholar 

  • Shohel, M., Simol, H. A., Reid, E., Reid, J. S., & Salam, A. (2017). Dew water chemical composition and source characterization in the IGP outflow location (coastal Bhola, Bangladesh). Air Quality, Atmosphere and Health, 10, 981–990. https://doi.org/10.1007/s11869-017-0487-7.

    Article  CAS  Google Scholar 

  • Singh, M., Jaques, P. A., & Sioutas, C. (2002). Size distribution and diurnal characteristics of particle-bound metals in source and receptor sites of the Los Angeles Basin. Atmospheric Environment, 36, 1675–1689.

    Article  CAS  Google Scholar 

  • Sposito, G., Page, A. L., (1984). Cycling of metal ions in the soil environment in metal ions in biological systems. H. Sigel, Ed., Circulation of metals in the environment.18:287–332. Marcel Dekker, Inc. New York, USA.

  • Taylor, S. R. (1964). Abundance of chemical elements in the continental crust: a new table. Geochimica et Cosmochimica Acta, 28, 1273–1285.

    Article  CAS  Google Scholar 

  • Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2012). Heavy metal toxicity and the environment. Experientia. Supplementum, 101, 133–164. https://doi.org/10.1007/978-3-7643-8340-4_6.

    Article  Google Scholar 

  • Thomlinson, D. L., Wilson, J. G., Harris, C. R., & Jeffrey, D. W. (1980). Problem in the assessment of heavy metals levels in estuaries and the formation of a pollution index. Helgoland Marine Research, 33, 566–575.

    Google Scholar 

  • Trivedi, S., & Erdei, L. (1992). Effects of cadmium and lead on accumulation of Ca2+ and K+ on the influx and translocation of K+ status. Physiologia Plantarum, 84, 94–100.

    Article  CAS  Google Scholar 

  • U.S. Environmental Protection Agency, (2012). Air quality system, Query for national manganese data. 2012 http://www.epa.gov/ttn/airs/airsaqs/

  • Wahid, A. (2006). Influence of atmospheric pollutants on agriculture in developing countries: a case study with three new varieties in Pakistan. Science of the Total Environment, 371(1–3), 304–313. https://doi.org/10.1016/j.scitotenv.2006.06.017.

    Article  CAS  Google Scholar 

  • Wedepohl, K. H. (1995). The composition of the continental crust. Geochimica et Cosmochimica Acta, 59, 1217–1232.

    Article  CAS  Google Scholar 

  • World Health Organization, WHO, (1980). Recommended health-based limits in occupational exposure to heavy metals. Report of a WHO Study Group. Geneva, (Technical Report Series, No. 647).

  • World Health Organization, WHO. (1999). WHO air quality guidelines for Europe. WHO regional office for Europe: WHO Regional Publications, European Series, Copenhagen.

    Google Scholar 

Download references

Acknowledgments

The data collection and chemical analysis part of this research completed with the support of  the Department of Soil, Water, and Environment, and the Department of Chemistry, University of Dhaka, Bangladesh, and data interpretation and drafting of the manuscript was done at the Department of Geosciences, Mississippi State University, USA. We are thankful to both University of Dhaka and Mississippi State University for allowing us to perform this research work and giving us access to the Technical and Analytical Laboratory facilities. The authors also thank the Centre for Advanced Research in Sciences (CARs), the University of Dhaka, for helping with chemical analysis. The authors are also thankful to the unknown reviewers for the valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadia Alam Shammi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shammi, S.A., Salam, A. & Khan, M.A.H. Assessment of heavy metal pollution in the agricultural soils, plants, and in the atmospheric particulate matter of a suburban industrial region in Dhaka, Bangladesh. Environ Monit Assess 193, 104 (2021). https://doi.org/10.1007/s10661-021-08848-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-08848-y

Keywords

Navigation