Skip to main content

Advertisement

Log in

Detection of possible ionospheric precursor caused by Papua New Guinea earthquake (Mw 7.5)

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Ionospheric total electron content (TEC) variations estimated from dual-frequency receivers of global positioning systems (GPS) can be used as a tool to detect possible seismo-ionospheric anomalies before strong earthquakes. In this study, possible seismo-ionospheric anomalies before the 2018 Papua New Guinea earthquake (6.0684°S, 142.7678°E, February 25, 2018, 00:44:43 UTC, Mw = 7.5) was investigated by using GPS-TEC variations from four International GNSS Service (IGS) stations (KAT1, TOW2, SOLO and ALIC) near the epicenter and four IGS station (USUD, SHAO, WIND and ZAMB) outside of the EPZ. The earthquake (EQ) is a local phenomenon and space weather conditions (SWCs) are a global phenomenon so that we selected four IGS stations away from the earthquake epicenter, which is at the same latitude and the same longitude with the earthquake to figure out a clear SWCs’ effects on the GPS-TEC anomalies. In order to see these effects on ionospheric TEC variations, 10 different SWC indices were used. An analysis of occurrence time and duration of the following conclusions was made: both positive and negative anomalies are ensuing, and earthquake-related ionospheric anomalies revealed that they occurred 1 to 7 days before the associated earthquake. At the end of the study, the potential causes of these results were examined. Analysis results revealed that anomalies occurred, and the possible ionospheric GPS-TEC anomalies may be the earthquake precursors obtained 4 to 9 days before the Papua New Guinea earthquake. The increase in scientific research to analyze the seismo-ionospheric anomalies that occur before earthquakes will become an important warning tool to alert people to the devastating environmental effects of earthquakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abraha, G. (2014). Total electron content (TEC) variability of low latıtude ionosphere and role of dynamical coupling: quıet and storm-time characteristics. Addis Ababa University.

  • Afraimovich, E. L., & Astafyeva, E. I. (2008). TEC anomalies - local TEC changes prior to earthquakes or TEC response to solar and geomagnetic activity changes? Earth, Planets and Space, 60(9), 961–966. https://doi.org/10.1186/BF03352851.

    Article  CAS  Google Scholar 

  • Afraimovich, E. L., Astafieva, E. I., Gokhberg, M. B., Lapshin, V. M., Permyakova, V. E., Steblov, G. M., & Shalimov, S. L. (2004). Variations of the total electron content in the ionosphere from GPS data recorded during the Hector Mine earthquake of October 16, 1999, California. Russian Journal of Earth Sciences, 6(5), 339–354. https://doi.org/10.2205/2004es000155.

    Article  Google Scholar 

  • Aggarwal, M. (2015). Anomalous changes in ionospheric TEC during an earthquake event of 13-14 April 2010 in the Chinese sector. Advances in Space Research, 56(7), 1400–1412. https://doi.org/10.1016/j.asr.2015.07.007.

    Article  Google Scholar 

  • Akhoondzadeh, M., Parrot, M., & Saradjian, M. R. (2010). Electron and ion density variations before strong earthquakes (M>6.0) using DEMETER and GPS data. Natural Hazards and Earth System Science, 10(1), 7–18. https://doi.org/10.5194/nhess-10-7-2010.

    Article  Google Scholar 

  • Ansari, K., Park, K. D., & Kubo, N. (2019). Linear time-series modeling of the GNSS based TEC variations over Southwest Japan during 2011–2018 and comparison against ARMA and GIM models. Acta Astronautica, 165, 248–258. https://doi.org/10.1016/j.actaastro.2019.09.017.

    Article  Google Scholar 

  • Astafyeva, E., Rolland, L. M., & Sladen, A. (2014). Strike-slip earthquakes can also be detected in the ionosphere. Earth and Planetary Science Letters, 405, 180–193. https://doi.org/10.1016/j.epsl.2014.08.024.

    Article  CAS  Google Scholar 

  • Atıcı, R., & Sağır, S. (2017). The investigation of relationship between solar parameters and Total Electron content over mid-latitude ionosphere. Celal Bayar University Journal of Science, 13(3), 707–716. https://doi.org/10.18466/cbayarfbe.339346.

    Article  Google Scholar 

  • Bruevich, E. A., Bruevich, V. V., & Yakunina, G. V. (2014). Changed relation between solar 10.7-cm radio flux and some activity indices which describe the radiation at different altitudes of atmosphere during cycles 21-23. Journal of Astrophysics and Astronomy, 35(1), 1–15. https://doi.org/10.1007/s12036-014-9258-0.

    Article  Google Scholar 

  • Cahyadi, M. N. (2014). Near-field coseismic ionospheric disturbances of earthquakes in and around Indonesia. Hokkaido University.

  • Catherine, J. K., Uma Maheshwari, D., Gahalaut, V. K., Roy, P. N. S., Khan, P. K., & Puviarasan, N. (2017). Ionospheric disturbances triggered by the 25 April, 2015 M7.8 Gorkha earthquake, Nepal: constraints from GPS TEC measurements. Journal of Asian Earth Sciences, 133, 80–88. https://doi.org/10.1016/j.jseaes.2016.07.014.

    Article  Google Scholar 

  • Chauhan, V., Singh, O. P., Kushwah, V., Singh, V., & Singh, B. (2009). Ultra-low-frequency (ULF) and total electron content (TEC) anomalies observed at Agra and their association with regional earthquakes. Journal of Geodynamics, 48(2), 68–74. https://doi.org/10.1016/j.jog.2009.06.002.

    Article  Google Scholar 

  • Chen, Y., Dang, A., & Peng, X. (2014). Building a cultural heritage corridor based on geodesign theory and methodology. Journal of Urban Management, 3(1), 97–112. https://doi.org/10.1016/S2226-5856(18)30086-4.

    Article  Google Scholar 

  • Chum, J., Liu, J. Y., Laštovička, J., Fišer, J., Mošna, Z., Baše, J., & Sun, Y. Y. (2016). Ionospheric signatures of the April 25, 2015 Nepal earthquake and the relative role of compression and advection for Doppler sounding of infrasound in the ionosphere the 2015 Gorkha, Nepal, earthquake and Himalayan studies 2. Aeronomy. Earth, Planets and Space, 68(24), 1–12. https://doi.org/10.1186/s40623-016-0401-9.

    Article  Google Scholar 

  • Ciraolo, L., Azpilicueta, F., Brunini, C., Meza, A., & Radicella, S. M. (2007). Calibration errors on experimental slant total electron content (TEC) determined with GPS. Journal of Geodesy, 81(2), 111–120. https://doi.org/10.1007/s00190-006-0093-1.

    Article  Google Scholar 

  • Coley, W. R., Stoneback, R. A., Heelis, R. A., & Hairston, M. R. (2014). Topside equatorial zonal ion velocities measured by C/NOFS during rising solar activity. Annales Geophysicae, 32(2), 69–75. https://doi.org/10.5194/angeo-32-69-2014.

    Article  Google Scholar 

  • Contadakis, M. E., Arabelos, D. N., Pikridas, C., & Spatalas, S. D. (2012). Total electron content variations over southern Europe before and during the M 6.3 Abruzzo earthquake of April 6, 2009. Annals of Geophysics, 55(1), 83–93. https://doi.org/10.4401/ag-5322.

    Article  Google Scholar 

  • Dam, J. W. V. A. N., Horton, W., Tsintsadze, N. L., Kaladze, T. D., Garner, T. W., & Tsamalashvili, L. V. (2009). Some physical mechanisms of precursors to earthquakes. Journal of Plasma and Fusion Research Series, 8(January 2014), 199–202.

    Google Scholar 

  • Dashora, N., Sharma, S., Dabas, R. S., Alex, S., & Pandey, R. (2009). Large enhancements in low latitude total electron content during 15 may 2005 geomagnetic storm in Indian zone. Annales Geophysicae, 27(5), 1803–1820. https://doi.org/10.5194/angeo-27-1803-2009.

    Article  Google Scholar 

  • Dobrovolsky, I. P., Zubkov, S. I., & Miachkin, V. I. (1979). Estimation of the size of earthquake preparation zones. Pure and Applied Geophysics, 117(5), 1025–1044. https://doi.org/10.1007/bf00876083.

    Article  Google Scholar 

  • Freund, F. T., Takeuchi, A., & Lau, B. W. S. (2005). Cracking the code of pre-earthquake low frequency EM emissions, 1–14.

  • Gonzalez, W. D., Joselyn, J. A., Kamide, Y., Kroehl, H. W., Rostoker, G., Tsurutani, B. T., & Vasyliunas, V. M. (1994). What is a geomagnetic storm? Journal of Geophysical Researchs, 99, 5771–5792.

    Article  Google Scholar 

  • Hasbi, A. M., Mohd Ali, M. A., & Misran, N. (2011). Ionospheric variations before some large earthquakes over Sumatra. Natural Hazards and Earth System Sciences, 11(2), 597–611. https://doi.org/10.5194/nhess-11-597-2011.

    Article  Google Scholar 

  • Jain, A., Tiwari, S., Jain, S., & Gwal, A. K. (2010). TEC response during severe geomagnetic storms near the crest of equatorial ionization anomaly. Indian Journal of Radio and Space Physics, 39(1), 11–24.

    Google Scholar 

  • Jhuang, H. K., Ho, Y. Y., Kakinami, Y., Liu, J. Y., Oyama, K. I., Parrot, M., et al. (2010). Seismo-ionospheric anomalies of the GPS-TEC appear before the 12 May 2008 magnitude 8.0 Wenchuan earthquake. International Journal of Remote Sensing, 31(13), 3579–3587. https://doi.org/10.1080/01431161003727796.

    Article  Google Scholar 

  • John, S., & Kurian, P. J. (2009). A statistical study of the interdependence of solar wind parameters. Research in Astronomy and Astrophysics, 9(4), 485–493. https://doi.org/10.1088/1674-4527/9/4/011.

    Article  Google Scholar 

  • Kamide, Y., Yokoyama, N., Gonzalez, W., Tsurutani, B. T., Daglis, I. A., Brekke, A., & Masuda, S. (1998). Two-step development of geomagnetic storms. Journal of Geophysical Research-Space Physics, 103(A4), 6917–6921. https://doi.org/10.1029/97ja03337.

    Article  Google Scholar 

  • King, J. H., & Papitashvili, N. E. (2005). Solar wind spatial scales in and comparisons of hourly wind and ACE plasma and magnetic field data. Journal of Geophysical Research: Space Physics, 110(A2), 1–8. https://doi.org/10.1029/2004JA010649.

    Article  Google Scholar 

  • Klimenko, M. V., Klimenko, V. V., Zakharenkova, I. E., Pulinets, S. A., Zhao, B., & Tsidilina, M. N. (2011). Formation mechanism of great positive TEC disturbances prior to Wenchuan earthquake on May 12, 2008. Advances in Space Research, 48(3), 488–499. https://doi.org/10.1016/j.asr.2011.03.040.

    Article  CAS  Google Scholar 

  • Komjathy, A. (1997). Global ionospheric total electron content mapping using the global positioning system. University of New Brunswick.

  • Komjathy, A., & Langley, R. B. (1996). An assessment of predicted and measured ionospheric total electron content using a regional GPS network. In ION National Technical Meeting (pp. 1–10). Santa Monica.

  • Kuo, C. L., Huba, J. D., Joyce, G., & Lee, L. C. (2011). Ionosphere plasma bubbles and density variations induced by pre-earthquake rock currents and associated surface charges. Journal of Geophysical Research: Space Physics, 116(A10). https://doi.org/10.1029/2011JA016628.

  • Lang, K. R. (2003). The Cambridge guide to the solar system. The Cambridge guide to the solar system. Cambridge: Cambridge University Press.

    Google Scholar 

  • Lanyi, G. E., & Roth, T. (1988). A comparison of mapped and measured total ionospheric electron content using global positioning system and beacon satellite observations. Radio Science, 20(8), 483–492. https://doi.org/10.1029/RS023i004p00483.

    Article  Google Scholar 

  • Larkina, V. I., Migulin, V. V., Molchanov, O. A., Kharkov, I. P., Inchin, A. S., & Schvetcova, V. B. (1989). Some statistical results on very low frequency radiowave emissions in the upper ionosphere over earthquake zones. Physics of the Earth and Planetary Interiors, 57(1–2), 100–109. https://doi.org/10.1016/0031-9201(89)90219-7.

    Article  Google Scholar 

  • Leonard, R. S., & Barnes, R. A. (1965). Observation of ionospheric disturbances following the Alaska earthquake. Journal of Geophysical Research, 70(5), 1250–1253. https://doi.org/10.1029/jz070i005p01250.

    Article  Google Scholar 

  • Li, W., Yue, J., Guo, J., Yang, Y., Zou, B., Shen, Y., & Zhang, K. (2018). Statistical seismo-ionospheric precursors of M7.0+ earthquakes in Circum-Pacific seismic belt by GPS TEC measurements. Advances in Space Research, 61(5), 1206–1219. https://doi.org/10.1016/j.asr.2017.12.013.

    Article  Google Scholar 

  • Liu, J. Y., Chen, Y. I., Chuo, Y. J., & Tsai, H. F. (2001). Variations of ionospheric total electron content during the Chi-Chi earthquake. Geophysical Research Letters, 28(7), 1383–1386. https://doi.org/10.1029/2000gl012511.

    Article  CAS  Google Scholar 

  • Liu, J. Y., Chuo, Y. J., Shan, S. J., Tsai, Y. B., Chen, Y. I., Pulinets, S. A., & Yu, S. B. (2004). Pre-earthquake ionospheric anomalies registered by continuous GPS TEC measurements. Annales Geophysicae, 22(5), 1585–1593 http://www.ann-geophys.net/22/1585/2004/angeo-22-1585-2004.pdf.

    Article  Google Scholar 

  • Liu, J. Y., Chen, Y. I., Chen, C. H., Liu, C. Y., Chen, C. Y., Nishihashi, M., et al. (2009). Seismoionospheric GPS total electron content anomalies observed. Before the 12 May 2008 Mw7.9 Wenchuan earthquake. Journal of Geophysical Research: Space Physics, 114(4), 1–10. https://doi.org/10.1029/2008JA013698.

    Article  Google Scholar 

  • Liu, J. Y., Chen, C. H., Chen, V. I., Yang, W. H., Oyama, K. I., & Kuo, K. W. (2010). A statistical study of ionospheric earthquake precursors monitored by using equatorial ionization anomaly of GPS TEC in Taiwan during 2001-2007. Journal of Asian Earth Sciences, 39(1–2), 76–80. https://doi.org/10.1016/j.jseaes.2010.02.012.

    Article  CAS  Google Scholar 

  • Liu, C. Y., Liu, J. Y., Chen, W. S., Li, J. Z., Xia, Y. Q., & Cui, X. Y. (2011). An integrated study of anomalies observed before four major earthquakes: 2004 Sumatra M9.3, 2006 Pingtung M7.0, 2007 Chuetsu Oki M6.8, and 2008 Wenchuan M8.0. Journal of Asian Earth Sciences, 41(4–5), 401–409. https://doi.org/10.1016/j.jseaes.2010.05.012.

    Article  Google Scholar 

  • Mariangel, F., de Paula, E. R., Kantor, I. J., Richard, B. L., Santos, M. C., & Komjathy, A. (2002). Mapping the low latitude ionosphere with GPS. GPS World, 13(2), 41–46.

    Google Scholar 

  • Melnikov, V. F. (1990). Relationships between microwave, hard X-ray, and corpuscular emissions of solar flares.

  • Mendillo, M. (2006). Storms in the ionosphere: patterns and processes for total electron content. Reviews of Geophysics. https://doi.org/10.1029/2005RG000193.

  • Oyama, K. I., Kakinami, Y., Liu, J. Y., Kamogawa, M., & Kodama, T. (2008). Reduction of electron temperature in low-latitude ionosphere at 600 km before and after large earthquakes. Journal of Geophysical Research: Space Physics. https://doi.org/10.1029/2008JA013367.

  • Perrone, L., De Santis, A., Abbattista, C., Alfonsi, L., Amoruso, L., Carbone, M., et al. (2018). Ionospheric anomalies detected by ionosonde and possibly related to crustal earthquakes in Greece. Annales Geophysicae, 36(2), 361–371. https://doi.org/10.5194/angeo-36-361-2018.

    Article  Google Scholar 

  • Pulinets, S A, Legen’ka, A. D., Gaivoronskaya, T. V, & Depuev, V. K. (2005). Main phenomenological features of ionospheric precursors of earthquakes. Ionospheric Precursors of Earthquakes, 65(16–18), 173–205. doi:https://doi.org/10.1007/3-540-26468-x_5.

  • Pulinets, S. A. (2009). Physical mechanism of the vertical electric field generation over active tectonic faults. Advances in Space Research, 44(6), 767–773. https://doi.org/10.1016/j.asr.2009.04.038.

    Article  CAS  Google Scholar 

  • Pulinets, S., & Boyarchuk, K. (2005). Ionospheric precursors of earthquakes. Ionospheric Precursors of Earthquakes. https://doi.org/10.1007/b137616.

  • Pulinets, S. A., & Legen Ka, A. (2002). Dynamics of the near-equatorial ionosphere prior to strong earthquakes. Geomagnetism and Aeronomy, 42(2), 227–232.

    Google Scholar 

  • Pulinets, S. A., & Legen’ka, A. D. (2003). Spatial-temporal characteristics of large scale disturbances of electron density observed in the ionospheric F-region before strong earthquakes. Cosmic Research, 41(3), 221–229. https://doi.org/10.1023/A:1024046814173.

    Article  Google Scholar 

  • Pulinets, S.A., Legen’ka, A. D., & Alekseev, V. A. (1994). Pre-earthquakes effects and their possible mechanisms. In Dusty and Dirty Plasmas, Noise and Chaos in Space and in the Laboratory.

  • Rios, V. H., Kim, V. P., & Hegai, V. V. (2004). Abnormal perturbations in the F2 region ionosphere observed prior to the great San Juan earthquake of 23 November 1977. Monitoring of Changes Related to Natural and Manmade Hazards Using Space Technology, 33(3), 323–327. https://doi.org/10.1016/s0273-1177(03)00480-0.

    Article  Google Scholar 

  • Rozhnoi, A., Solovieva, M. S., Molchanov, O. A., & Hayakawa, M. (2004). Middle latitude LF (40 kHz) phase variations associated with earthquakes for quiet and disturbed geomagnetic conditions. Physics and Chemistry of the Earth, 29(4–9), 589–598. https://doi.org/10.1016/j.pce.2003.08.061.

    Article  Google Scholar 

  • Schwenn, R. (2004). Solar wind: global properties. In The encyclopedia of astronomy and astrophysics. Bristol: Institute of Physics Publishing Ltd.. https://doi.org/10.1888/0333750888/2301.

    Chapter  Google Scholar 

  • Şentürk, E., & Çepni, M. S. (2018). A statistical analysis of seismo-ionospheric TEC anomalies before 63 M w ≥ 5.0 earthquakes in Turkey during 2003–2016. Acta Geophysica, 66(6), 1495–1507. https://doi.org/10.1007/s11600-018-0214-2.

    Article  Google Scholar 

  • Shea, M. A., & Smart, D. F. (1993). Solar proton events: history, statistics and predictions. In Solar-terrestrial predictions-IV (pp. 48–70). Colorado: Environmental Res. Lab.

    Google Scholar 

  • Shi, K., Liu, X., Guo, J., Liu, L., You, X., & Wang, F. (2019). Pre-earthquake and coseismic ionosphere disturbances of the Mw 6.6 Lushan earthquake on 20 April 2013 monitored by CMONOC. Atmosphere, 10(4). https://doi.org/10.3390/ATMOS10040216.

  • Tariq, M. A., Shah, M., Hernández-Pajares, M., & Iqbal, T. (2019). Pre-earthquake ionospheric anomalies before three major earthquakes by GPS-TEC and GIM-TEC data during 2015–2017. Advances in Space Research. https://doi.org/10.1016/j.asr.2018.12.028.

  • Vitinsky, Y. I., Kopecky, M., & Kuklin, G. V. (1986). The statistics of sunspot-formation activity. Moscow: Izdatel’stvo Nauka.

    Google Scholar 

  • Xia, C., Wang, Q., Yu, T., Xu, G., & Yang, S. (2011). Variations of ionospheric total electron content before three strong earthquakes in the Qinghai-Tibet region. Advances in Space Research, 47(3), 506–514. https://doi.org/10.1016/j.asr.2010.09.006.

    Article  CAS  Google Scholar 

  • Zakharenkova, I. E., Krankowski, A., & Shagimuratov, I. I. (2006). Modification of the low-latitude ionosphere before the 26 December 2004 Indonesian earthquake. Natural Hazards and Earth System Sciences, 6(5), 817–823. %3CGo.

    Article  Google Scholar 

  • Zhu, F., Wu, Y., Zhou, Y., & Gao, Y. (2013). Temporal and spatial distribution of GPS-TEC anomalies prior to the strong earthquakes. Astrophysics and Space Science, 345(2), 239–246. https://doi.org/10.1007/s10509-013-1411-8.

    Article  Google Scholar 

  • Zolesi, B., & Cander, L. R. (2014). Ionospheric prediction and forecasting. Ionospheric Prediction and Forecasting, Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-38430-1.

Download references

Acknowledgments

We acknowledge the use of NASA/GSFC’s Space Physics Data Facility’s OMNIWeb (or CDAWeb or FTP) service and OMNI data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Ulukavak.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ulukavak, M., Inyurt, S. Detection of possible ionospheric precursor caused by Papua New Guinea earthquake (Mw 7.5). Environ Monit Assess 192, 190 (2020). https://doi.org/10.1007/s10661-020-8146-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-8146-0

Keywords

Navigation