Skip to main content

Advertisement

Log in

Soil loss and sediment yield in a perennial catchment in southwest Piauí, Brazil

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Soil and water are vital natural resources. However, due to their indiscriminate use, these resources are being seriously threatened. Therefore, it is essential to manage them in a sustainable way and leave them for future generations. Population and agricultural areas have expanded, deforesting native landscapes for cultivation and pastures. As a result, soil loss from agricultural areas is increasing the amount of sediment transport in water courses. The objective of this study was to quantify soil loss and sediment yield from the Corrente dos Matões sub-basin (CMSB). These measurements are essential to quantify the environmental impact of advancing agricultural frontiers. The Universal Soil Loss Equation (USLE) was applied due to its wide use, compatibility with GIS, and data availability. The suspended sediment transport was calculated by collecting samples with DH-48 sampler. From the application of USLE, the average soil erosion contributed very little to sediment delivery in the watercourse, with a magnitude of only 0.37 t ha−1 year−1. The highest soil loss was associated with greater slope and was observed in areas with agriculture or under the absence of vegetation cover. The low transport of suspended sediments in CMSB is due to the existence of preserved sites. About 99% of the sub-basin had a low degree of erosion. The high degree of soil loss was attributed to the cliffs and the development of agricultural activities leaving the soil uncovered. This work will help identify the most susceptible areas to water erosion for optimizing the allocation of financial resources for the preservation of this natural resource.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aghsaei, H., Dinan, N. M., Moridi, A., Asadolahi, Z., Delavar, M., Fohrer, N., & Wagner, P. D. (2020). Effects of dynamic land use/land cover change on water resources and sediment yield in the Anzali wetland catchment, Gilan, Iran. Science of the Total Environment, 712, 136449.

    Article  CAS  Google Scholar 

  • Alewell, C., Borelli, P., Meusburger, K., & Panagos, P. (2019). Using the USLE: chances, challenges and limitations of soil erosion modelling. International Soil and Water Conservation Research, 7(3), 203–225.

  • Ali, S. A., & Hagos, H. (2016). Estimation of soil erosion using USLE and GIS in Awassa Catchment, Rift valley, Central Ethiopia. Geoderma Regional, 7(2), 159–166.

  • Alves Sobrinho, T., Gómez-Macpherson, H., & Gómez, J. A. (2008). A portable integrated rainfall and overland flow simulator. Soil Use and Management, 24(2), 163–170.

    Article  Google Scholar 

  • Andrade Júnior, A. S., Alves, B. E., Cezar Barros, A. H., Oliveira Da Silva, C., & Nascimento Gomes, A. A. (2004). Classificação climática e regionalização do semi-árido do Estado do Piauí sob cenários pluviométricos distintos. Revista Ciência Agronômica, 36(2), 143–151.

    Google Scholar 

  • Arnold, J. (1994). SWAT-soil and water assessment tool.

  • Back, A. J. (2006). Medidas de vazão com molinete hidrométrico e coleta de sedimentos em suspensão. Boletim Técnico, 130, 58. Florianópolis: EPAGRI (in Portuguese).

  • Batista, P. V. G., Silva, M. L. N., Silva, B. P. C., Curi, N., Bueno, I. T., Júnior, F. W. A., Davies, J., & Quinton, J. (2017). Modelling spatially distributed soil losses and sediment yield in the upper Grande River Basin-Brazil. Catena, 157, 139–150.

    Article  Google Scholar 

  • Bertoni, J., & Lombardi Neto, F. (2005). Conservação do Solo (5ª Edição, p. 392). São Paulo: Ícone Editora.

  • Brady N. C., & Weil R. R. (2009). Elementos da natureza e propriedades dos solos (3 ed., p. 686). Porto Alegre: Bookman Editora.

  • Carvalho, N. O. (1994). Hidrossedimentologia prática (p. 372). Rio de Janeiro: CPRM - Companhia de Pesquisa em Recursos Minerais.

  • Carvalho, N. O., Júnior, N. P., Santos, P. M. C., & Lima, J. F. E. W. (2000). Guia de Práticas sedimentométricas (154p). Brasília – DF: ANEEL.

    Google Scholar 

  • Corrêa, C. M. C., & Dedecek, R. A. (2009). Erosão real e estimada através da RUSLE em estradas de uso florestais, em condições de relevo plano a suave ondulado. Floresta, PR, 39(2), 381–391 abr./jun.

    Google Scholar 

  • Edwards, T. K., & Glysson, G. D. (1999). Field methods for measurement of fluvial sediment (Book 3, Chapter C2, p. 97.). Techniques of Water-Resources Investigations of the U.S. Geological Survey (USGS). USGS: Reston.

  • El Jazouli, A., Barakat, A., Khellouk, R., Rais, J., & El Baghdadi, M. (2019). Remote sensing and GIS techniques for prediction of land use land cover change effects on soil erosion in the high basin of the Oum Er Rbia River (Morocco). Remote Sensing Applications: Society and Environment, 13, 361–374.

  • Fujihara, A. K. (2002). Predição de erosão e capacidade de uso do solo numa microbacia do Oeste Paulista com suporte de geoprocessamento (p. 136). Piracicaba: Dissertação (Mestrado) – Escola Superior de Agricultura Luíz de Queiroz, Universidade de São Paulo.

  • Ganasri, B. P., & Ramesh, H. (2016). Assessment of soil erosion by RUSLE model using remote sensing and GIS-a case study of Nethravathi Basin. Geoscience Frontiers, 7(6), 953–961.

    Article  Google Scholar 

  • García-Ruiz, J. M., Nadal-Romero, E., Lana-Renault, N., & Beguería, S. (2013). Erosion in Mediterranean landscapes: changes and future challenges. Geomorphology, 198, 20–36.

    Article  Google Scholar 

  • Gee, G. W., & Bauder, J. W. (1986). Particle size analysis. In Klute (Ed.), Methods of soil analysis, Part A (2nd ed., Vol. 9 nd, pp. 383–411). Madison: American Society of Agronomy.

  • Gessesse, B., Bewket, W., & Bräuning, A. (2015). Model-based characterization and monitoring of runoff and soil erosion in response to land use/land cover changes in the Modjo watershed, Ethiopia. Land Degradation & Development, 26(7), 711–724.

    Article  Google Scholar 

  • Guo, L., Brand, M., Sanders, B. F., Foufoula-Georgiou, E., & Stein, E. D. (2018). Tidal asymmetry and residual sediment transport in a short tidal basin under sea level rise. Advances in Water Resources., 121, 1–8.

    Article  Google Scholar 

  • Hao, F., Zhang, X., Wang, X., & Ouyang, W. (2012). Assessing the Relationship Between Landscape Patterns and Nonpoint-Source Pollution in the Danjiangkou Reservoir Basin in China 1. JAWRA Journal of the American Water Resources Association, 48(6), 1162–1177.

    Article  Google Scholar 

  • Júnior, A. A. C., Da Conceição, F. T., Fernandes, A. M., Junior, E. P. S., Lupinacci, C. M., & Moruzzi, R. B. (2019). Land use changes associated with the expansion of sugar cane crops and their influences on soil removal in a tropical watershed in São Paulo State (Brazil). Catena, 172, 313–323.

    Article  Google Scholar 

  • Kok, K., & Kim, J. C. (2019). Identification of vulnerable regions to soil loss under the dynamic saturation process. Science of the Total Environment, 659, 1209–1223.

    Article  CAS  Google Scholar 

  • Larsen, L. G. (2019). Multiscale flow-vegetation-sediment feedbacks in low-gradient landscapes. Geomorphology., 334, 165–193.

    Article  Google Scholar 

  • Lazzari, M., Gioia, D., Piccarreta, M., Danese, M., & Lanorte, A. (2015). Sediment yield and erosion rate estimation in the mountain catchments of the Camastra artificial reservoir (Southern Italy): a comparison between different empirical methods. Catena, 127, 323–339.

    Article  Google Scholar 

  • Mehri, A., Salmanmahiny, A., Tabrizi, A. R. M., Mirkarimi, S. H., & Sadoddin, A. (2018). Investigation of likely effects of land use planning on reduction of soil erosion rate in river basins: Case study of the Gharesoo River Basin. Catena, 167, 116–129.

    Article  Google Scholar 

  • Merten, G. H., & Poleto, C. (2006). Qualidade dos Sedimentos (397p). Porto Alegre, RS: Associação Brasileira de Recursos Hídricos – ABRH.

    Google Scholar 

  • Minella, J. P. G., De, W., & Merten, G. H. (2014). Establishing a sediment budget for a small agricultural catchment in southern Brazil, to support the development of effective sediment management strategies. Journal of Hydrology., 519, 2189–2201.

    Article  CAS  Google Scholar 

  • Morais, R. C. S., & Sales, M. C. L. (2017). Estimativa do Potencial Natural de Erosão dos Solos da Bacia Hidrográfica do Alto Gurguéia, Piauí-Brasil, com uso de Sistema de Informação Geográfica/Estimation of the natural soil erosion potential of the Upper Gurguéia Basin, Piauí-Brazil (...). Caderno de Geografia, 27(1), 84–105.

    Article  Google Scholar 

  • Nunes, A. N., De Almeida, A. C., & Coelho, C. O. (2011). Impacts of land use and cover type on runoff and soil erosion in a marginal area of Portugal. Applied Geography, 31(2), 687–699.

    Article  Google Scholar 

  • Ochoa, P. A., Fries, A., Mejía, D., Burneo, J. I., Ruíz-Sinoga, J. D., & Cerdà, A. (2016). Effects of climate, land cover and topography on soil erosion risk in a semiarid basin of the Andes. Catena, 140, 31–42.

    Article  Google Scholar 

  • Okin, G. S., Heras, M. M. D. L., Saco, P. M., Throop, H. L., Vivoni, E. R., Parsons, A. J., et al. (2015). Connectivity in dryland landscapes: shifting concepts of spatial interactions. Frontiers in Ecology and the Environment, 13(1), 20–27.

    Article  Google Scholar 

  • Panachuki, E., Bertol, I., Alves Sobrinho, T., Oliveira, P. T. S. D., & Rodrigues, D. B. B. (2011). Perdas de solo e de água e infiltração de água em Latossolo Vermelho sob sistemas de manejo. Revista Brasileira de Ciência do solo, 35(5), 1777–1786. 

  • Panagos, P., Borrelli, P., Meusburger, K., Alewell, C., Lugato, E., & Montanarella, L. (2015). Estimating the soil erosion cover-management factor at the European scale. Land use policy, 48, 38–50.

    Article  Google Scholar 

  • Pantano, G., Grosseli, G. M., Mozeto, A. A., & Fadini, P. S. (2016). Sustentabilidade no uso do fósforo: uma questão de segurança hídrica e alimentar. Quimica Nova, 39(6), 732–740.

  • Pham, T. G., Degener, J., & Kappas, M. (2018). Integrated universal soil loss equation (usle) and geographical information system (GIS) for soil erosion estimation in a sap basin: Central Vietnam. International Soil and Water Conservation Research, 6(2), 99–110.

    Article  Google Scholar 

  • Rey, F. (2003). Influence of vegetation distribution on sediment yield in forested marly gullies. Catena, 50(2-4), 549–562.

    Article  Google Scholar 

  • Saco, P. M., Rodríguez, J. F., Moreno-de las Heras, M., Keesstra, S., Azadi, S., Sandi, S., et al. (2020). Using hydrological connectivity to detect transitions and degradation thresholds: applications to dryland systems. Catena, 186, 104354.

    Article  Google Scholar 

  • Shivhare, N., Rahul, A. K., Omar, P. J., Chauhan, M. S., Gaur, S., Dikshit, P. K. S., & Dwivedi, S. B. (2018). Identification of critical soil erosion prone areas and prioritization of micro-watersheds using geoinformatics techniques. Ecological Engineering, 121, 26–34.

    Article  Google Scholar 

  • Silva, Y. J. A. B., Cantalice, J. R. B., Singh, V. P., Nascimento, C. W. A., Piscoya, V. C., & Guerra, S. M. S. (2015). Trace element fluxes in sediments of an environmentally impacted river. Environmental Science and Pollution Research, 22(19), 14755–14766. https://doi.org/10.1007/s11356-015-4670-9.

    Article  CAS  Google Scholar 

  • Silva, Y. J. A. B., do Nascimento, C. W. A., da Silva, Y. J. A. B., Amorim, F. F., Cantalice, J. R. B., Singh, V. P., & Collins, A. L. (2018). Bed and suspendedsediment-associated rare earth element concentrations and fluxes ina polluted Brazilian river system. Environmental Science and Pollution Research, 25(34), 34426–34437.

    Article  Google Scholar 

  • Singh, G., & Panda, R. K. (2017). Grid-cell based assessment of soil erosion potential for identification of critical erosion prone areas using USLE, GIS and remote sensing: A case study in the Kapgari watershed, India. International Soil and Water Conservation Research, 5(3), 202–211.

    Article  Google Scholar 

  • Teixeira, P. C., Donagemma, G. K., Fontana, A., & Teixeira, W. G. (2017). Manual de métodos de análise de solo. Brasília: Embrapa Solos.

    Google Scholar 

  • Tian, P., Lu, H., Feng, W., Guan, Y., & Xue, Y. (2020). Large decrease in streamflow and sediment load of Qinghai–Tibetan Plateau driven by future climate change: a case study in Lhasa River Basin. Catena, 187, 104340.

    Article  Google Scholar 

  • UNITED STATES GEOLOGICAL SURVEY (USGS). (1973). Techniques of Water Resources Investigations. Washington. https://www.usgs.gov/.

  • Wischmeier, W. H. (1978). Use and misuse of the universal soil loss equation. Journal of Soil and Water Conservation, 31, 5–9.

    Google Scholar 

  • Yuan, K. N. (1963). Studies on the organo-mineral complex in soil I. The oxidation stability of humus from different organo-mineral complexes in soil. Acta Pedol Sin, 3, 286–293.

    Google Scholar 

  • Zhou, M., Deng, J., Lin, Y., Belete, M., Wang, K., Comber, A., & Gan, M. (2019). Identifying the effects of land use change on sediment export: integrating sediment source and sediment delivery in the Qiantang River Basin, China. Science of the Total Environment, 686, 38–49.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Coordination for the Improvement of Higher Education Personnel (CAPES) that provided a scholarship to the first author.

Funding

This work was supported by the Brazilian National Research and Development Council-CNPq (Process Number: 404394/2016-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri Jacques Agra Bezerra da Silva.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

Soil loss and sediment transport were measured under different scales.

About 99% of the sub-basin had a low degree of erosion.

The average annual loss of soil predicted by the USLE was 0–1 t ha−1.

The high degree of soil loss was attributed to the cliffs.

The suspended sediment yield equal to 0.89 t km−2 year−1 was considered low.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Assis, K.G.O., da Silva, Y.J.A.B., Lopes, J.W.B. et al. Soil loss and sediment yield in a perennial catchment in southwest Piauí, Brazil. Environ Monit Assess 193, 26 (2021). https://doi.org/10.1007/s10661-020-08789-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08789-y

Keywords

Navigation