Skip to main content

Advertisement

Log in

Development of a mobile platform for monitoring gaseous, particulate, and greenhouse gas (GHG) pollutants

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The Michigan Pollution Assessment Laboratory (MPAL) is a mobile air quality monitoring platform designed to measure conventional, toxic, and greenhouse gas (GHG) air pollutants. The spatially and temporally resolved data collected can be used for multiple purposes, such as mapping spatial patterns and identifying peaks. The truck-based platform includes instrumentation for 11 gaseous pollutants and for particulate matter (PM), size distribution (7 nm to 20 μm), PM10, black and brown carbon, and trace metals. MPAL is equipped with meteorological instruments, a high-accuracy GPS, forward and reverse cameras, and a data logging and display system. We selected commercially available instrumentation based on sensitivity, response time, and robustness. The vehicle’s power system allows ~ 6.5 h of continuous operation with all instruments operating. This article details the design, construction, and evaluation of MPAL and summarizes data collected in its first year (March 2019 to March 2020) of operation. We completed a series of runs on 84 days in Detroit, Michigan, an area with a diverse set of traffic, industrial, and commercial emission sources, and collected 265,816 1-s observations (excluding collocations, zero checks, and other quality assurance measurements). Using data from these runs as well as special tests, we present results of performance evaluations that examined the response time, PM losses, and wind measurements and compare results to stationary regulatory monitoring data. We highlight key issues and provide practical solutions to help evaluate and resolve these issues and share many lessons learned in developing and using a mobile platform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The supplementary materials contain additional information and data pertinent to this article.

References

  • Adams, M. D., DeLuca, P. F., Corr, D., & Kanaroglou, P. S. (2012). Mobile air monitoring: Measuring change in air quality in the city of Hamilton, 2005–2010. Social Indicators Research, 108(2), 351–364.

    Article  Google Scholar 

  • Apte, J. S., Messier, K. P., Gani, S., Brauer, M., Kirchstetter, T. W., Lunden, M. M., Marshall, J. D., Portier, C. J., Vermeulen, R. C. H., & Hamburg, S. P. (2017). High-resolution air pollution mapping with Google street view cars: Exploiting big data. Environmental Science & Technology, 51(12), 6999–7008.

    Article  CAS  Google Scholar 

  • Baldauf, R. W., Isakov, V., Deshmukh, P., Venkatram, A., Yang, B., & Zhang, K. M. (2016). Influence of solid noise barriers on near-road and on-road air quality. Atmospheric Environment, 129, 265–276.

    Article  CAS  Google Scholar 

  • Bukowiecki, N., Dommen, J., Prevot, A., Richter, R., Weingartner, E., & Baltensperger, U. (2002). A mobile pollutant measurement laboratory—Measuring gas phase and aerosol ambient concentrations with high spatial and temporal resolution. Atmospheric Environment, 36(36–37), 5569–5579.

    Article  CAS  Google Scholar 

  • Chan, L., Lau, W., Zou, S., Cao, Z., & Lai, S. (2002). Exposure level of carbon monoxide and respirable suspended particulate in public transportation modes while commuting in urban area of Guangzhou, China. Atmospheric Environment, 36(38), 5831–5840.

    Article  CAS  Google Scholar 

  • Duncan, B. N., Prados, A. I., Lamsal, L. N., Liu, Y., Streets, D. G., Gupta, P., Hilsenrath, E., Kahn, R. A., Nielsen, J. E., Beyersdorf, A. J., Burton, S. P., Fiore, A. M., Fishman, J., Henze, D. K., Hostetler, C. A., Krotkov, N. A., Lee, P., Lin, M., Pawson, S., Pfister, G., Pickering, K. E., Pierce, R. B., Yoshida, Y., & Ziemba, L. D. (2014). Satellite data of atmospheric pollution for US air quality applications: Examples of applications, summary of data end-user resources, answers to FAQs, and common mistakes to avoid. Atmospheric Environment, 94, 647–662.

    Article  CAS  Google Scholar 

  • Eilerman, S. J., Peischl, J., Neuman, J. A., Ryerson, T. B., Aikin, K. C., Holloway, M. W., Zondlo, M. A., Golston, L. M., Pan, D., Floerchinger, C., & Herndon, S. (2016). Characterization of ammonia, methane, and nitrous oxide emissions from concentrated animal feeding operations in northeastern Colorado. Environmental Science & Technology, 50(20), 10885–10893.

    Article  CAS  Google Scholar 

  • Elen, B., Peters, J., Poppel, M. V., Bleux, N., Theunis, J., Reggente, M., et al. (2013). The Aeroflex: A bicycle for mobile air quality measurements. Sensors, 13(1), 221–240.

    Article  CAS  Google Scholar 

  • Fruin, S., Westerdahl, D., Sax, T., Sioutas, C., & Fine, P. (2008). Measurements and predictors of on-road ultrafine particle concentrations and associated pollutants in Los Angeles. Atmospheric Environment, 42(2), 207–219.

    Article  CAS  Google Scholar 

  • Global CH4 Monthly Means (2020). NOAA Global Monitoring Laboratory. https://www.esrl.noaa.gov/gmd/ccgg/trends_ch4/. Accessed 04/10/2020.

  • Hagler, G. S., Thoma, E. D., & Baldauf, R. W. (2010). High-resolution mobile monitoring of carbon monoxide and ultrafine particle concentrations in a near-road environment. Journal of the Air & Waste Management Association, 60(3), 328–336.

    Article  CAS  Google Scholar 

  • Hatzopoulou, M., Weichenthal, S., Dugum, H., Pickett, G., Miranda-Moreno, L., Kulka, R., Andersen, R., & Goldberg, M. (2013). The impact of traffic volume, composition, and road geometry on personal air pollution exposures among cyclists in Montreal, Canada. Journal of Exposure Science & Environmental Epidemiology, 23(1), 46–51.

    Article  CAS  Google Scholar 

  • Hernandez Bennetts, V., Lilienthal, A. J., Neumann, P., & Trincavelli, M. (2012). Mobile robots for localizing gas emission sources on landfill sites: Is bio-inspiration the way to go? Frontiers in Neuroengineering, 4, 20.

    Article  Google Scholar 

  • Kittelson, D. B., Watts, W. F., Johnson, J., Remerowki, M., Ische, E., Oberdörster, G., et al. (2004). On-road exposure to highway aerosols. 1. Aerosol and gas measurements. Inhalation Toxicology, 16(sup1), 31-39.

  • Lee, S., Kwak, J., Lee, S., & Lee, J. (2015). On-road chasing and laboratory measurements of exhaust particle emissions of diesel vehicles equipped with aftertreatment technologies (DPF, urea-SCR). International Journal of Automotive Technology, 16(4), 551–559.

    Article  Google Scholar 

  • Levy, I., Mihele, C., Lu, G., Narayan, J., & Brook, J. (2014a). Evaluating multipollutant exposure and urban air quality: Pollutant interrelationships, neighborhood variability, and nitrogen dioxide as a proxy pollutant. Environmental Health Perspectives, 122(1), 65–72.

    Article  Google Scholar 

  • Levy, I., Mihele, C., Lu, G., Narayan, J., Hilker, N., & Brook, J. (2014b). Elucidating multipollutant exposure across a complex metropolitan area by systematic deployment of a mobile laboratory. Atmospheric Chemistry & Physics, 14(14), 7173–7193.

    Article  Google Scholar 

  • Minet, L., Liu, R., Valois, M.-F., Xu, J., Weichenthal, S., & Hatzopoulou, M. (2018). Development and comparison of air pollution exposure surfaces derived from on-road mobile monitoring and short-term stationary sidewalk measurements. Environmental Science & Technology, 52(6), 3512–3519.

    Article  CAS  Google Scholar 

  • Monthly Average Mauna Loa CO2 (2020). NOAA Global Monitoring Laboratory. https://www.esrl.noaa.gov/gmd/ccgg/trends/index.html. Accessed 04/10/2020.

  • Ohio Department of Transportation - 2018 Facts Book (2018). http://www.dot.state.oh.us/Divisions/Planning/TechServ/Archived%20Fact%20Books/2018%20ODOT%20Facts%20Book.pdf. Accessed 2020.

  • Van den Bossche, J., Peters, J., Verwaeren, J., Botteldooren, D., Theunis, J., & De Baets, B. (2015). Mobile monitoring for mapping spatial variation in urban air quality: Development and validation of a methodology based on an extensive dataset. Atmospheric Environment, 105, 148–161.

    Article  Google Scholar 

  • von Fischer, J. C., Cooley, D., Chamberlain, S., Gaylord, A., Griebenow, C. J., Hamburg, S. P., Salo, J., Schumacher, R., Theobald, D., & Ham, J. (2017). Rapid, vehicle-based identification of location and magnitude of urban natural gas pipeline leaks. Environmental Science & Technology, 51(7), 4091–4099.

    Article  Google Scholar 

  • Wallace, J., Corr, D., Deluca, P., Kanaroglou, P., & McCarry, B. (2009). Mobile monitoring of air pollution in cities: The case of Hamilton, Ontario, Canada. Journal of Environmental Monitoring, 11(5), 998–1003.

    Article  CAS  Google Scholar 

  • Wang, X., Westerdahl, D., Chen, L. C., Wu, Y., Hao, J., Pan, X., Guo, X., & Zhang, K. M. (2009). Evaluating the air quality impacts of the 2008 Beijing Olympic games: On-road emission factors and black carbon profiles. Atmospheric Environment, 43(30), 4535–4543.

    Article  CAS  Google Scholar 

  • Wang, X., Westerdahl, D., Wu, Y., Pan, X., & Zhang, K. M. (2011). On-road emission factor distributions of individual diesel vehicles in and around Beijing, China. Atmospheric Environment, 45(2), 503–513.

    Article  CAS  Google Scholar 

  • Wang, X., Westerdahl, D., Hu, J., Wu, Y., Yin, H., Pan, X., & Max Zhang, K. (2012). On-road diesel vehicle emission factors for nitrogen oxides and black carbon in two Chinese cities. Atmospheric Environment, 46, 45–55.

    Article  CAS  Google Scholar 

  • Weller, Z. D., Roscioli, J. R., Daube, W. C., Lamb, B. K., Ferrara, T. W., Brewer, P. E., & von Fischer, J. (2018). Vehicle-based methane surveys for finding natural gas leaks and estimating their size: Validation and uncertainty. Environmental Science & Technology, 52(20), 11922–11930.

    CAS  Google Scholar 

  • Weller, Z. D., Yang, D. K., & von Fischer, J. C. (2019). An open source algorithm to detect natural gas leaks from mobile methane survey data. PLoS One, 14(2), e0212287.

    Article  CAS  Google Scholar 

  • Westerdahl, D., Fruin, S., Sax, T., Fine, P. M., & Sioutas, C. (2005). Mobile platform measurements of ultrafine particles and associated pollutant concentrations on freeways and residential streets in Los Angeles. Atmospheric Environment, 39(20), 3597–3610.

    Article  CAS  Google Scholar 

  • Westerdahl, D., Fruin, S. A., Fine, P. L., & Sioutas, C. (2008). The Los Angeles international airport as a source of ultrafine particles and other pollutants to nearby communities. Atmospheric Environment, 42(13), 3143–3155.

    Article  CAS  Google Scholar 

  • Westerdahl, D., Wang, X., Pan, X., & Zhang, K. M. (2009). Characterization of on-road vehicle emission factors and microenvironmental air quality in Beijing, China. Atmospheric Environment, 43(3), 697–705.

    Article  CAS  Google Scholar 

  • Wild, R. J., Dubé, W. P., Aikin, K. C., Eilerman, S. J., Neuman, J. A., Peischl, J., Ryerson, T. B., & Brown, S. S. (2017). On-road measurements of vehicle NO2/NOx emission ratios in Denver, Colorado, USA. Atmospheric Environment, 148, 182–189.

    Article  CAS  Google Scholar 

  • Yamada, H., Hayashi, R., & Tonokura, K. (2016). Simultaneous measurements of on-road/in-vehicle nanoparticles and NOx while driving: Actual situations, passenger exposure and secondary formations. Science of the Total Environment, 563, 944–955.

    Article  Google Scholar 

Download references

Acknowledgments

Support for this research was obtained from the State of Michigan under a contract entitled “Air Monitoring for the Gordie Howe International Bridge.” Additional support was provided by grant P30ES017885 from the National Institute of Environmental Health Sciences, NIH. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH. We appreciate the assistance of our laboratory and field staff, including Chris Godwin, Megan Bader, Han Tran, and Daniel Pert. We also acknowledge the support of Lauren Fink and the Detroit Health Department, Susan Kilmer, Navnit Ghuman, and Eric Hansen at the Michigan Department of Environment, Great Lakes and Energy, Jennifer Gray at the Michigan Department of Health and Human Services, Simone Sagovac at the Southwest Detroit Community Benefits Coalition, and Tim Wallington at the Ford Motor Company.

Funding

Support for this research was obtained from the State of Michigan under a contract entitled “Air Monitoring for the Gordie Howe International Bridge.” Additional support was provided by grant P30ES017885 from the National Institute of Environmental Health Sciences, NIH, and the Ford Motor Company.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian Xia.

Ethics declarations

Conflict of interest

None.

Code availability

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 14749 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, T., Catalan, J., Hu, C. et al. Development of a mobile platform for monitoring gaseous, particulate, and greenhouse gas (GHG) pollutants. Environ Monit Assess 193, 7 (2021). https://doi.org/10.1007/s10661-020-08769-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08769-2

Keywords

Navigation