Skip to main content

Advertisement

Log in

Newly explored machine learning model for river flow time series forecasting at Mary River, Australia

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Hourly river flow pattern monitoring and simulation is the indispensable precautionary task for river engineering sustainability, water resource management, flood risk mitigation, and impact reduction. Reliable river flow forecasting is highly emphasized to support major decision-makers. This research paper adopts a new implementation approach for the application of a river flow prediction model for hourly prediction of the flow of Mary River in Australia; a novel data-intelligent model called emotional neural network (ENN) was used for this purpose. A historical dataset measured over a 4-year period (2011–2014) at hourly timescale was used in building the ENN-based predictive model. The results of the ENN model were validated against the existing approaches such as the minimax probability machine regression (MPMR), relevance vector machine (RVM), and multivariate adaptive regression splines (MARS) models. The developed models are evaluated against each other for validation purposes. Various numerical and graphical performance evaluators are conducted to assess the predictability of the proposed ENN and the competitive benchmark models. The ENN model, used as an objective simulation tool, revealed an outstanding performance when applied for hourly river flow prediction in comparison with the other benchmark models. However, the order of the model, performance wise, is ENN > MARS > RVM > MPMR. In general, the present results of the proposed ENN model reveal a promising modeling strategy for the hourly simulation of river flow, and such a model can be explored further for its ability to contribute to the state-of-the-art of river engineering and water resources monitoring and future prediction at near real-time forecast horizons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Al-Sudani, Z. A., Salih, S. Q., & Yaseen, Z. M. (2019). Development of multivariate adaptive regression spline integrated with differential evolution model for streamflow simulation. Journal of Hydrology, 573, 1–12.

    Article  Google Scholar 

  • Baydaroğlu, Ö., Koçak, K., & Duran, K. (2018). River flow prediction using hybrid models of support vector regression with the wavelet transform, singular spectrum analysis and chaotic approach. Meteorology and Atmospheric Physics, 130(3), 349–359.

    Article  Google Scholar 

  • Bennett, J. C., Robertson, D. E., Ward, P. G. D., Hapuarachchi, H. A. P., & Wang, Q. J. (2016). Calibrating hourly rainfall-runoff models with daily forcings for streamflow forecasting applications in meso-scale catchments. Environmental Modelling & Software, 76, 20–36. https://doi.org/10.1016/j.envsoft.2015.11.006.

    Article  Google Scholar 

  • Bertsimas, D., & Caramanis, C. (2006). Bounds on linear PDEs via semidefinite optimization. Mathematical Programming, 108(1), 135–158. https://doi.org/10.1007/s10107-006-0702-z.

    Article  Google Scholar 

  • Bhagat, S. K., Tung, T. M., & Yaseen, Z. M. (2019). Development of artificial intelligence for modeling wastewater heavy metal removal: state of the art, application assessment and possible future research. Journal of Cleaner Production, 119473.

  • Bonakdari, H., Ebtehaj, I., Samui, P., & Gharabaghi, B. (2019). Lake water-level fluctuations forecasting using minimax probability machine regression, relevance vector machine, Gaussian process regression, and extreme learning machine. Water Resources Management, 33(11), 3965–3984. https://doi.org/10.1007/s11269-019-02346-0.

    Article  Google Scholar 

  • Chen, S., Gu, C., Lin, C., Zhang, K., & Zhu, Y. (2020). Multi-kernel optimized relevance vector machine for probabilistic prediction of concrete dam displacement. Engineering with Computers, 1–17.

  • Cheng, M.-Y., & Cao, M.-T. (2014). Accurately predicting building energy performance using evolutionary multivariate adaptive regression splines. Applied Soft Computing, 22, 178–188. https://doi.org/10.1016/j.asoc.2014.05.015.

    Article  Google Scholar 

  • Choubin, B., Darabi, H., Rahmati, O., Sajedi-Hosseini, F., & Kløve, B. (2018). River suspended sediment modelling using the CART model: a comparative study of machine learning techniques. Science of the Total Environment, 615, 272–281. https://doi.org/10.1016/j.scitotenv.2017.09.293.

    Article  CAS  Google Scholar 

  • Danandeh Mehr, A., Kahya, E., & Yerdelen, C. (2014). Linear genetic programming application for successive-station monthly streamflow prediction. Computers and Geosciences, 70, 63–72. https://doi.org/10.1016/j.cageo.2014.04.015.

    Article  Google Scholar 

  • Deo, R. C., & Samui, P. (2017). Forecasting evaporative loss by least-square support-vector regression and evaluation with genetic programming, Gaussian process, and minimax probability machine regression: case study of Brisbane City. Journal of Hydrologic Engineering, 22(6), 05017003. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001506.

    Article  Google Scholar 

  • Deo, R. C., Samui, P., & Kim, D. (2015a). Estimation of monthly evaporative loss using relevance vector machine, extreme learning machine and multivariate adaptive regression spline models. Stochastic Environmental Research and Risk Assessment. https://doi.org/10.1007/s00477-015-1153-y.

  • Deo, R. C., Samui, P., & Kim, D. (2015b). Estimation of monthly evaporative loss using relevance vector machine, extreme learning machine and multivariate adaptive regression spline models. Stochastic Environmental Research and Risk Assessment. https://doi.org/10.1007/s00477-015-1153-y.

  • Ekabsons, G. (2011). ARESLab: adaptive regression splines toolbox for Matlab/Octave. URL: http://www. cs. rtu. lv/jekabsons.

  • Fang, W., Huang, S., Ren, K., Huang, Q., Huang, G., Cheng, G., & Li, K. (2019). Examining the applicability of different sampling techniques in the development of decomposition-based streamflow forecasting models. Journal of Hydrology, 568, 534–550.

    Article  Google Scholar 

  • Farmer, W. H. (2016). Ordinary kriging as a tool to estimate historical daily streamflow records. Hydrology and Earth System Sciences, 20(7), 2721–2735. https://doi.org/10.5194/hess-20-2721-2016.

    Article  Google Scholar 

  • Friedman, J. H. (1991). Multivariate adaptive regression splines. The Annals of Statistics, 19(1), 1–67. https://doi.org/10.1214/aos/1176347963.

    Article  Google Scholar 

  • Fu, M., Fan, T., Ding, Z. I. A. N. G., Salih, S. Q., Al-ansari, N., & Yaseen, Z. M. (2020). Deep learning data-intelligence model based on adjusted forecasting window scale: application in daily streamflow simulation, 8.

  • Ghorbani, M. A., Zadeh, H. A., Isazadeh, M., & Terzi, O. (2016). A comparative study of artificial neural network (MLP, RBF) and support vector machine models for river flow prediction. Environmental Earth Sciences, 75(6), 1–14. https://doi.org/10.1007/s12665-015-5096-x.

    Article  Google Scholar 

  • Hastie, T., Tibshirani, R., & Friedman, J. (2009). Unsupervised learning. In The Elements of Statistical Learning, 485–585. https://doi.org/10.1007/978-0-387-84858-7_14.

  • Heddam, S., & Kisi, O. (2018). Modelling daily dissolved oxygen concentration using least square support vector machine, multivariate adaptive regression splines and M5 model tree. Journal of Hydrology. https://doi.org/10.1016/j.jhydrol.2018.02.061.

  • Hintze, J. L., & Nelson, R. D. (1998). Violin plots: a box plot-density trace synergism. American Statistician, 52(2), 181–184. https://doi.org/10.1080/00031305.1998.10480559.

    Article  Google Scholar 

  • Hutchinson, M. F., & de Hoog, F. R. (1985). Smoothing noisy data with spline functions. Numerische Mathematik, 47(1), 99–106. https://doi.org/10.1007/BF01389878.

    Article  Google Scholar 

  • Jiang, C., Li, D., Gao, Y., Liu, W., & Zhang, L. (2017). Impact of climate variability and anthropogenic activity on streamflow in the Three Rivers Headwater Region, Tibetan Plateau, China. Theoretical and Applied Climatology, 129(1–2), 667–681. https://doi.org/10.1007/s00704-016-1833-7.

    Article  Google Scholar 

  • Katambara, Z., & Ndiritu, J. (2009). A fuzzy inference system for modelling streamflow: case of Letaba River, South Africa. Physics and Chemistry of the Earth, 34(10–12), 688–700. https://doi.org/10.1016/j.pce.2009.06.001.

    Article  Google Scholar 

  • Khashman, A. (2009). Blood cell identification using emotional neural networks. Journal of Information Science and Engineering.

  • Khashman, A. (2008). A modified backpropagation learning algorithm with added emotional coefficients. IEEE Transactions on Neural Networks, 19(11), 1896–1909. https://doi.org/10.1109/TNN.2008.2002913.

    Article  Google Scholar 

  • Kisi, O. (2016). Modeling reference evapotranspiration using three different heuristic regression approaches. Agricultural Water Management, 169, 162–172. https://doi.org/10.1016/j.agwat.2016.02.026.

    Article  Google Scholar 

  • Kisi, O., & Cigizoglu, H. K. (2007). Comparison of different ANN techniques in river flow prediction. Civil Engineering and Environmental Systems, 24(3), 211–231. https://doi.org/10.1080/10286600600888565.

    Article  Google Scholar 

  • Krzyścin, J. W. (2003). Nonlinear (MARS) modeling of long-term variations of surface UV-B radiation as revealed from the analysis of Belsk, Poland data for the period 1976-2000. Annales Geophysicae, 21(8), 1887–1896. https://doi.org/10.5194/angeo-21-1887-2003.

    Article  Google Scholar 

  • Labat, D. (2005). Recent advances in wavelet analyses: part 1. A review of concepts. Journal of Hydrology, 314(1–4), 275–288. https://doi.org/10.1016/j.jhydrol.2005.04.003.

    Article  Google Scholar 

  • Lotfi, E., & Akbarzadeh-T, M. R. (2014). Practical emotional neural networks. Neural Networks, 59, 61–72. https://doi.org/10.1016/j.neunet.2014.06.012.

    Article  Google Scholar 

  • Luo, X., Yuan, X., Zhu, S., Xu, Z., Meng, L., & Peng, J. (2019). A hybrid support vector regression framework for streamflow forecast. Journal of Hydrology, 568(October), 184–193. https://doi.org/10.1016/j.jhydrol.2018.10.064.

    Article  Google Scholar 

  • McClelland, J. L., & Rumelhart, D. E. (1988). Explorations in parallel distributed processing: a handbook of models, programs, and exercises. Explorations in Parallel Distributed Processing a Handbook of Models Programs and Exercises, 344, ix, 344 p. https://doi.org/10.2307/1423065.

    Article  Google Scholar 

  • Mehdizadeh, S., Behmanesh, J., & Khalili, K. (2017). Using MARS, SVM, GEP and empirical equations for estimation of monthly mean reference evapotranspiration. Computers and Electronics in Agriculture, 139, 103–114. https://doi.org/10.1016/j.compag.2017.05.002.

    Article  Google Scholar 

  • Mendes, J., & Maia, R. (2020). Spatial downscaling of 3-hourly precipitation forecast data at river basin scale. Meteorology and Atmospheric Physics, 132(1), 143–158.

    Article  Google Scholar 

  • Meshram, S. G., Ghorbani, M. A., Shamshirband, S., Karimi, V., & Meshram, C. (2019). River flow prediction using hybrid PSOGSA algorithm based on feed-forward neural network. Soft Computing, 23(20), 10429–10438.

    Article  Google Scholar 

  • Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Binger, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50(3), 885–900. https://doi.org/10.13031/2013.23153.

    Article  Google Scholar 

  • Nourani, V. (2017). An emotional ANN (EANN) approach to modeling rainfall-runoff process. Journal of Hydrology, 544, 267–277. https://doi.org/10.1016/j.jhydrol.2016.11.033.

    Article  Google Scholar 

  • Nourani, V., Gökçekuş, H., Umar, I. K., & Najafi, H. (2020). An emotional artificial neural network for prediction of vehicular traffic noise. Science of the Total Environment, 707, 136134.

    Article  CAS  Google Scholar 

  • Nourani, V., Molajou, A., Najafi, H., & Mehr, A. D. (2019). Emotional ANN (EANN): a new generation of neural networks for hydrological modeling in IoT. In Artificial Intelligence in IoT (pp. 45–61). Springer.

  • Pramanik, N., & Panda, R. K. (2009). Application of neural network and adaptive neuro-fuzzy inference systems for river flow prediction. Hydrological Sciences Journal, 54(2), 247–260. https://doi.org/10.1623/hysj.54.2.247.

    Article  Google Scholar 

  • Qiao, W., Huang, K., Azimi, M., & Han, S. (2019). A novel hybrid prediction model for hourly gas consumption in supply side based on improved whale optimization algorithm and relevance vector machine. IEEE Access. https://doi.org/10.1109/ACCESS.2019.2918156.

  • Roshni, T., Jha, M. K., & Drisya, J. (2020). Neural network modeling for groundwater-level forecasting in coastal aquifers. Neural Computing and Applications, 1–18.

  • Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323(6088), 533–536. https://doi.org/10.1038/323533a0.

    Article  Google Scholar 

  • Samadi, M., Afshar, M. H., Jabbari, E., & Sarkardeh, H. (2020). Application of multivariate adaptive regression splines and classification and regression trees to estimate wave-induced scour depth around pile groups. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 1–13.

  • Samui, P. (2013). Slope stability analysis using multivariate adaptive regression spline. In Metaheuristics in Water, Geotechnical and Transport Engineering (pp. 327–342). https://doi.org/10.1016/B978-0-12-398296-4.00014-3.

    Chapter  Google Scholar 

  • Sanikhani, H., Deo, R. C., Yaseen, Z. M., Eray, O., & Kisi, O. (2018). Non-tuned data intelligent model for soil temperature estimation: a new approach. Geoderma, 330, 52–64.

    Article  Google Scholar 

  • Sephton, P. (2001). Forecasting recessions: can we do better on MARS. Review, 83(2), 39–49 http://ideas.repec.org/a/fip/fedlrv/y2001imarp39-49nv.83no.2.html.

    Article  Google Scholar 

  • Sharda, V. N., Prasher, S. O., Patel, R. M., Ojasvi, P. R., & Prakash, C. (2008). Performance of multivariate adaptive regression splines (MARS) in predicting runoff in mid-Himalayan micro-watersheds with limited data. Hydrological Sciences Journal-Journal Des Sciences Hydrologiques, 53(6), 1165–1175. https://doi.org/10.1623/hysj.53.6.1165.

    Article  Google Scholar 

  • Sharghi, E., Nourani, V., Najafi, H., & Molajou, A. (2018). Emotional ANN (EANN) and wavelet-ANN (WANN) approaches for Markovian and seasonal based modeling of rainfall-runoff process. Water Resources Management, 32(10), 3441–3456. https://doi.org/10.1007/s11269-018-2000-y.

    Article  Google Scholar 

  • Shortridge, J. E., Guikema, S. D., & Zaitchik, B. F. (2016). Machine learning methods for empirical streamflow simulation: a comparison of model accuracy, interpretability, and uncertainty in seasonal watersheds. Hydrology and Earth System Sciences, 20(7), 2611–2628. https://doi.org/10.5194/hess-20-2611-2016.

    Article  Google Scholar 

  • Strohmann, T., & Grudic, G. Z. (2003). A formulation for minimax probability machine regression. Advances in Neural Information Processing Systems, 785–792.

  • Tao, H., Diop, L., Bodian, A., Djaman, K., Ndiaye, P. M., & Yaseen, Z. M. (2018). Reference evapotranspiration prediction using hybridized fuzzy model with firefly algorithm: regional case study in Burkina Faso. Agricultural Water Management.

  • Taylor, K. E. (2001). Summarizing multiple aspects of model performance in a single diagram. Journal of Geophysical Research-Atmospheres, 106(D7), 7183–7192. https://doi.org/10.1029/2000JD900719.

    Article  Google Scholar 

  • Tipping, M. E. (2001). Sparse Bayesian learning and the relevance vector machine. Journal of Machine Learning Research, 1(3), 211–244. https://doi.org/10.1162/15324430152748236.

    Article  Google Scholar 

  • Tiyasha, Tung, T. M., & Yaseen, Z. M. (2020). A survey on river water quality modelling using artificial intelligence models: 2000–2020. Journal of Hydrology. https://doi.org/10.1016/j.jhydrol.2020.124670.

  • Tongal, H., & Booij, M. J. (2018). Simulation and forecasting of streamflows using machine learning models coupled with base flow separation. Journal of Hydrology. https://doi.org/10.1016/j.jhydrol.2018.07.004.

  • Whigham, P. A., & Crapper, P. F. (2001). Modelling rainfall-runoff using genetic programming. Mathematical and Computer Modelling, 33(6–7), 707–721. https://doi.org/10.1016/S0895-7177(00)00274-0.

    Article  Google Scholar 

  • Willmott, C. J. (1981). On the validation of models. Physical Geography, 2(2), 184–194.

    Article  Google Scholar 

  • Wu, M. C., & Lin, G. F. (2015). An hourly streamflow forecasting model coupled with an enforced learning strategy. Water (Switzerland). https://doi.org/10.3390/w7115876.

  • Wu, M. C., Lin, G. F., & Lin, H. Y. (2014). Improving the forecasts of extreme streamflow by support vector regression with the data extracted by self-organizing map. Hydrological Processes, 28(2), 386–397. https://doi.org/10.1002/hyp.9584.

    Article  Google Scholar 

  • Yadav, B., Ch, S., Mathur, S., & Adamowski, J. (2016). Discharge forecasting using an online sequential extreme learning machine (OS-ELM) model: a case study in Neckar River. Germany. Measurement: Journal of the International Measurement Confederation, 92, 433–445. https://doi.org/10.1016/j.measurement.2016.06.042.

    Article  Google Scholar 

  • Yaseen, Z. M., Ebtehaj, I., Bonakdari, H., Deo, R. C., Mehr, A. D., Mohtar, W. H. M. W., et al. (2017). Novel approach for streamflow forecasting using a hybrid ANFIS-FFA model. Journal of Hydrology.

  • Yaseen, Z. M., Kisi, O., & Demir, V. (2016). Enhancing long-term streamflow forecasting and predicting using periodicity data component: application of artificial intelligence. Water Resources Management, 30(12), 4125–4151. https://doi.org/10.1007/s11269-016-1408-5.

    Article  Google Scholar 

  • Yaseen, Z. M., Sulaiman, S. O., Deo, R. C., & Chau, K.-W. (2018). An enhanced extreme learning machine model for river flow forecasting: state-of-the-art, practical applications in water resource engineering area and future research direction. Journal of Hydrology, 569(August 2018), 387–408. https://doi.org/10.1016/j.jhydrol.2018.11.069.

    Article  Google Scholar 

  • Yaseen, Z., Mohtar, W. H. M. W., Ameen, A. M. S., Ebtehaj, I., Razali, S. F. M., Bonakdari, H., et al. (2019). Implementation of univariate paradigm for streamflow simulation using hybrid data-driven model: case study in tropical region: implementation of univariate paradigm for streamflow simulation using hybrid data-driven model: case study in tropical region. IEEE Access, 1–12.

  • Zhang, W. G., & Goh, A. T. C. (2013). Multivariate adaptive regression splines for analysis of geotechnical engineering systems. Computers and Geotechnics, 48, 82–95. https://doi.org/10.1016/j.compgeo.2012.09.016.

    Article  Google Scholar 

  • Zhang, W., & Goh, A. T. C. (2014). Multivariate adaptive regression splines and neural network models for prediction of pile drivability. Geoscience Frontiers, 7(1), 45–52. https://doi.org/10.1016/j.gsf.2014.10.003.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zaher Mundher Yaseen.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, F., Salih, S.Q., Choubin, B. et al. Newly explored machine learning model for river flow time series forecasting at Mary River, Australia. Environ Monit Assess 192, 761 (2020). https://doi.org/10.1007/s10661-020-08724-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08724-1

Keywords

Navigation