Skip to main content

Advertisement

Log in

Evaluation of heavy metal contamination and ecological risk of soil adjacent to Saravan municipal solid waste disposal site, Rasht, Iran

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

This study was performed on the soil of the Hyrcanian forests near Saravan municipal solid waste dumpsite, Rasht, Iran. In this research, the contents of metals (As, Pb, Cr, Cd, Cu, Hg, and Zn) were analyzed by inductively coupled plasma mass spectrometry (ICP-MS). The geoaccumulation index (Igeo), contamination factor (CF), and enrichment factor (EF), as well as pollution load index (PLI), were used to evaluate the metals contamination. The ecological risk factor (\( {E}_r^i \)) and the potential ecological risk index (PERI) were applied to assess ecological risk. Pearson’s correlation coefficients and the principal component analysis (PCA) were used to determine the possible origin of the metals. The metal concentrations were as follows: Zn > Pb > Cu > Cr > As > Cd > Hg. The results of the statistical tests showed that, except for Cr, the other elements had a significant difference with the control station (P < 0.05). The results of the Pearson’s correlation coefficients, the PCA, and the Igeo revealed that the possible source of As, Hg, and Pb was the waste dumpsite activities and other anthropogenic origins, while Cd, Cu, Zn, and Cr probably have geogenic sources. The PLI was < 1, in unpolluted grade for all stations. The \( {E}_r^i \) of the metals ranged as follows Hg > Cd > As > Pb > Zn, Cu > Cr, which implies that Cd and Hg play a key role in determining the ecological risk. The mean value of the PERI was 192.11 that represented a moderate ecological risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abadi, M., Zamani, A., Parizanganeh, A., Khosravi, Y., & Badiee, H. (2019). Distribution pattern and pollution status by analysis of selected heavy metal amounts in coastal sediments from the southern Caspian Sea. Environmental Monitoring and Assessment, 191(3), 144. https://doi.org/10.1007/s10661-019-7261-2.

    Article  CAS  Google Scholar 

  • Abdu, N., Abdullahi, A. A., & Abdulkadir, A. (2017). Heavy metals and soil microbes. Environmental Chemistry Letters, 15(1), 65–84. https://doi.org/10.1007/s10311-016-0587-x.

    Article  CAS  Google Scholar 

  • Adamcová, D., Vaverková, M. D., Bartoň, S., Havlíček, Z., & Břoušková, E. (2016). Soil contamination in landfills: a case study of a landfill in Czech Republic. Solid Earth, 7(1), 239–247. https://doi.org/10.5194/se-7-239-2016.

    Article  Google Scholar 

  • Askari, M. S., Alamdari, P., Chahardoli, S., & Afshari, A. (2020). Quantification of heavy metal pollution for environmental assessment of soil condition. Environmental Monitoring and Assessment, 192(3), 162. https://doi.org/10.1007/s10661-020-8116-6.

    Article  CAS  Google Scholar 

  • Bhattacharyya, P., Mitra, A., Chakrabarti, K., Chattopadhyay, D. J., Chakraborty, A., & Kim, K. (2008). Effect of heavy metals on microbial biomass and activities in century old landfill soil. Environmental Monitoring and Assessment, 136(1–3), 299–306. https://doi.org/10.1007/s10661-007-9685-3.

    Article  CAS  Google Scholar 

  • Bouyoucos, G. J. (1962). Hydrometer method improved for making particle size analyses of soils 1. Agronomy Journal, 54(5), 464–465. https://doi.org/10.2134/agronj1962.00021962005400050028x.

    Article  Google Scholar 

  • Cao, Y., Lei, K., Zhang, X., Xu, L., Lin, C., & Yang, Y. (2018). Contamination and ecological risks of toxic metals in the Hai River, China. Ecotoxicology and Environmental Safety, 164(August), 210–218. https://doi.org/10.1016/j.ecoenv.2018.08.009.

    Article  CAS  Google Scholar 

  • Chai, Y., Guo, J., Chai, S., Cai, J., Xue, L., & Zhang, Q. (2015). Source identification of eight heavy metals in grassland soils by multivariate analysis from the Baicheng-Songyuan area, Jilin Province, Northeast China. Chemosphere, 134, 67–75. https://doi.org/10.1016/j.chemosphere.2015.04.008.

    Article  CAS  Google Scholar 

  • Chapman, H. D. (1965). Cation-exchange capacity. In C. A. Black (Ed.), Methods of soil analysis - chemical and microbiological properties. Agronomy (Vol. 9, pp. 891–901).

  • Cittadino, A., Ocello, N., Majul, M. V., Ajhuacho, R., Dietrich, P., & Igarzabal, M. A. (2020). Heavy metal pollution and health risk assessment of soils from open dumps in the Metropolitan Area of Buenos Aires, Argentina. Environmental Monitoring and Assessment, 192(5), 291. https://doi.org/10.1007/s10661-020-8246-x.

    Article  CAS  Google Scholar 

  • Dirisu, C. E., Biose, E., & Aighewi, I. T. (2019). Heavy metal contamination of Ewhare dumpsite environment in Nigeria’s Niger Delta. SCIREA Journal of Environment, 3(2), 1–16 http://www.scirea.org/journal/Environmental.

    Google Scholar 

  • Doležalová Weissmannová, H., Pavlovský, J., & Chovanec, P. (2015). Heavy metal contaminations of urban soils in Ostrava, Czech Republic: assessment of metal pollution and using Principal Component Analysis. International Journal of Environmental Research, 9(2), 683–696.

    Google Scholar 

  • Fonge, B. A., Nkoleka, E. N., Asong, F. Z., Ajonina, S. A., & Che, V. B. (2017). Heavy metal contamination in soils from a municipal landfill, surrounded by banana plantation in the eastern flank of Mount Cameroon. African Journal of Biotechnology, 16(25), 1391–1399. https://doi.org/10.5897/ajb2016.15777.

    Article  CAS  Google Scholar 

  • Hakanson, L. (1980). An ecological risk index for aquatic pollution control.a sedimentological approach. Water Research, 14(8), 975–1001. https://doi.org/10.1016/0043-1354(80)90143-8.

    Article  Google Scholar 

  • He, J., Yang, Y., Christakos, G., Liu, Y., & Yang, X. (2019). Assessment of soil heavy metal pollution using stochastic site indicators. Geoderma, 337(1), 359–367. https://doi.org/10.1016/j.geoderma.2018.09.038.

    Article  CAS  Google Scholar 

  • Hosseinzade, F., Momeni, A. A., & Bagheri, R. (2018). Assessment of heavy metals pollution in soils around Behshahr landfill. New Findings in Applied Geology, 12(24), 77–88.

    Google Scholar 

  • Hou, D., O’Connor, D., Nathanail, P., Tian, L., & Ma, Y. (2017). Integrated GIS and multivariate statistical analysis for regional scale assessment of heavy metal soil contamination: a critical review. Environmental Pollution, 231, 1188–1200. https://doi.org/10.1016/j.envpol.2017.07.021.

    Article  CAS  Google Scholar 

  • Hou, S., Zheng, N., Tang, L., Ji, X., & Li, Y. (2019). Effect of soil pH and organic matter content on heavy metals availability in maize (Zea mays L.) rhizospheric soil of non-ferrous metals smelting area. Environmental Monitoring and Assessment, 191(10), 634. https://doi.org/10.1007/s10661-019-7793-5.

    Article  CAS  Google Scholar 

  • Inengite, A., Abasi, C., & Walter, C. (2015). Application of pollution indices for the assessment of heavy metal pollution in flood impacted soil. International Research Journal of Pure and Applied Chemistry, 8(3), 175–189. https://doi.org/10.9734/irjpac/2015/17859.

    Article  CAS  Google Scholar 

  • Ishchenko, V., & Vasylkivskyi, I. (2020). Environmental pollution with heavy metals: case study of the household waste. Studies in Systems, Decision and Control, 198(January), 161–175. https://doi.org/10.1007/978-3-030-11274-5_11.

    Article  Google Scholar 

  • Khan, M. S., Zaidi, A., Goel, R., & Musarrat, J. (Eds.). (2011). Bio management of Metal-contaminated Soils (Vol. 20). Springer Science & Business Media.

  • Kowalska, J., Mazurek, R., Gąsiorek, M., Setlak, M., Zaleski, T., & Waroszewski, J. (2016). Soil pollution indices conditioned by medieval metallurgical activity – a case study from Krakow (Poland). Environmental Pollution, 218, 1023–1036. https://doi.org/10.1016/j.envpol.2016.08.053.

    Article  CAS  Google Scholar 

  • Liu, W. H., Zhao, J. Z., Ouyang, Z. Y., Söderlund, L., & Liu, G. H. (2005). Impacts of sewage irrigation on heavy metal distribution and contamination in Beijing, China. Environment International, 31(6), 805–812. https://doi.org/10.1016/j.envint.2005.05.042.

    Article  CAS  Google Scholar 

  • Liu, C., Cui, J., Jiang, G., Chen, X., Wang, L., & Fang, C. (2013). Soil heavy metal pollution assessment near the largest landfill of China. Soil and Sediment Contamination, 22(4), 390–403. https://doi.org/10.1080/15320383.2013.733447.

    Article  CAS  Google Scholar 

  • Loska, K., Wiechulła, D., & Korus, I. (2004). Metal contamination of farming soils affected by industry. Environment International, 30(2), 159–165. https://doi.org/10.1016/S0160-4120(03)00157-0.

    Article  CAS  Google Scholar 

  • Mehrafrooz, M. M., & Shayanmehr, M. (2015). Investigation of chilopoda in the soil of Samskandeh forest (Sari, Mazandaran). Taxonomy and Biosystematics, 25(7), 1–12.

    Google Scholar 

  • Meng, X., Ai, Y., Li, R., & Zhang, W. (2018). Effects of heavy metal pollution on enzyme activities in railway cut slope soils. Environmental Monitoring and Assessment, 190(4), 197. https://doi.org/10.1007/s10661-018-6567-9.

    Article  CAS  Google Scholar 

  • Moore, F., Sheykhi, V., Salari, M., & Bagheri, A. (2016). Soil quality assessment using GIS-based chemometric approach and pollution indices: Nakhlak mining district, Central Iran. Environmental Monitoring and Assessment, 188(4), 214. https://doi.org/10.1007/s10661-016-5152-3.

    Article  CAS  Google Scholar 

  • Muller, G. (1969). Index of geoaccumulation in sediments of the Rhine River. Geojournal, 2, 108–118.

    Google Scholar 

  • Nakhaei, M., Amiri, V., Rezaei, K., & Moosaei, F. (2015). An investigation of the potential environmental contamination from the leachate of the Rasht waste disposal site in Iran. Bulletin of Engineering Geology and the Environment, 74(1), 233–246. https://doi.org/10.1007/s10064-014-0577-9.

  • Nyika, J. M., Onyari, E. K., Dinka, M. O., & Mishra, S. B. (2019). Heavy metal pollution and mobility in soils within a landfill vicinity: a South African case study. Oriental Journal Of Chemistry, 35(4), 1286–1296. https://doi.org/10.13005/ojc/350406.

    Article  CAS  Google Scholar 

  • Odukoya, A. M. (2015). Contamination assessment of toxic elements in the soil within and around two dumpsites in Lagos, Nigeria. Ife Journal of Science, 17(2), 351–361.

    Google Scholar 

  • Olsen, S. R., Cole, C. V.,Watanable, F. S., & Dean, L. A. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA Circular No. 939. USDA, Washington, D.C.

  • Pakzad, H. R., Pasandi, M., & Zaheri, M. (2015). Heavy metal distribution in the salt pan of Gavkhuni playa lake (southeast of Isfahan, Iran). Carbonates and Evaporites, 30(2), 135–143. https://doi.org/10.1007/s13146-014-0187-4.

    Article  CAS  Google Scholar 

  • Peña-Icart, M., Pereira-Filho, E. R., Lopes Fialho, L., Nóbrega, J. A., Alonso-Hernández, C., Bolaños-Alvarez, Y., & Pomares-Alfonso, M. S. (2017). Combining contamination indexes, sediment quality guidelines and multivariate data analysis for metal pollution assessment in marine sediments of Cienfuegos Bay, Cuba. Chemosphere, 168, 1267–1276. https://doi.org/10.1016/j.chemosphere.2016.10.053.

    Article  CAS  Google Scholar 

  • Qingjie, G., Jun, D., Yunchuan, X., Qingfei, W., & Liqiang, Y. (2008). Calculating pollution indices by heavy metals in ecological geochemistry assessment and a case study in parks of Beijing. Journal of China University of Geosciences, 19(3), 230–241. https://doi.org/10.1016/S1002-0705(08)60042-4.

    Article  Google Scholar 

  • Rastmanesh, F., Safaie, S., Zarasvandi, A. R., & Edraki, M. (2018). Heavy metal enrichment and ecological risk assessment of surface sediments in Khorramabad River, West Iran. Environmental Monitoring and Assessment, 190(5), 273. https://doi.org/10.1007/s10661-018-6650-2.

    Article  CAS  Google Scholar 

  • Reimann, C., & De Caritat, P. (2000). Intrinsic flaws of element enrichment factors (EFs) in environmental geochemistry. Environmental Science and Technology, 34(24), 5084–5091. https://doi.org/10.1021/es001339o.

    Article  CAS  Google Scholar 

  • Richards, L. A. (1954). Diagnosis and improvement of saline and alkali soils. Agricultural hand book 60. U.S. Dept. of Agriculture, Washington D.C., 160 p.

  • Rudnick, R. L., & Gao, S. (2003). Composition of the continental crust. Treatise on Geochemistry, 3–9, 1–64. https://doi.org/10.1016/B0-08-043751-6/03016-4.

    Article  Google Scholar 

  • Sheikh Hasan, F., Saeidi Mehrvarz, S., & Asri, Y. (2013). Quercus castaneifolia ecotyping on the basis of effective ecological factors on leaf and fruit morphological characteristics in the forests of Guilan province (N Iran). Rostaniha, 14(2), 149–162.

  • Soleimannejad, Z., Abdolzadeh, A., & Sadeghipour, H. R. (2016). Heavy metal concentrations in industrial area soils and landfill site, Ghaemshahar, Iran. Journal of Mazandaran University of Medical Sciences, 26(136), 196–201.

    Google Scholar 

  • Tang, J., Zhang, L., Zhang, J., Ren, L., Zhou, Y., Zheng, Y., Luo, L., Yang, Y., Huang, H., & Chen, A. (2020). Physicochemical features, metal availability and enzyme activity in heavy metal-polluted soil remediated by biochar and compost. Science of the Total Environment, 701, 134751. https://doi.org/10.1016/j.scitotenv.2019.134751.

    Article  CAS  Google Scholar 

  • Tóth, G., Hermann, T., Da Silva, M. R., & Montanarella, L. (2016). Heavy metals in agricultural soils of the European Union with implications for food safety. Environment International, 88(March), 299–309. https://doi.org/10.1016/j.envint.2015.12.017.

    Article  CAS  Google Scholar 

  • Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37(1), 29–38.

    Article  CAS  Google Scholar 

  • Wang, Z., Zeng, X., Geng, M., Chen, C., Cai, J., Yu, X., et al. (2015). Health risks of heavy metals uptake by crops grown in a sewage irrigation area in China. Polish Journal of Environmental Studies, 24(3), 1379–1386. https://doi.org/10.15244/pjoes/35282.

    Article  CAS  Google Scholar 

  • Weissmannová, H. D., & Pavlovský, J. (2017). Indices of soil contamination by heavy metals – methodology of calculation for pollution assessment (minireview). Environmental Monitoring and Assessment, 189(12), 616. https://doi.org/10.1007/s10661-017-6340-5.

    Article  Google Scholar 

  • Wu, Q., Leung, J. Y. S., Geng, X., Chen, S., Huang, X., Li, H., Huang, Z., Zhu, L., Chen, J., & Lu, Y. (2015). Heavy metal contamination of soil and water in the vicinity of an abandoned e-waste recycling site: Implications for dissemination of heavy metals. Science of the Total Environment, 506–507, 217–225. https://doi.org/10.1016/j.scitotenv.2014.10.121.

    Article  CAS  Google Scholar 

  • Xu, J., Wang, H., Liu, Y., Ma, M., Zhang, T., Zheng, X., & Zong, M. (2016). Ecological risk assessment of heavy metals in soils surrounding oil waste disposal areas. Environmental Monitoring and Assessment, 188(2), 1–10. https://doi.org/10.1007/s10661-016-5093-x.

    Article  CAS  Google Scholar 

  • Xu, J., Cai, Q., Wang, H., Liu, X., Lv, J., Yao, D., Lu, Y., Li, W., & Liu, Y. (2017). Study of the potential of barnyard grass for the remediation of Cd- and Pb-contaminated soil. Environmental Monitoring and Assessment, 189(5), 224. https://doi.org/10.1007/s10661-017-5923-5.

    Article  CAS  Google Scholar 

  • Zarrini, B. S., Nabiollah, K., & Noruzi, M. (2015). The effect of different slope directions on some characteristics and evolution of forest soils (Case Study: Rostam Abad, Guilan Province). Journal of Water and Soil, 29(3), 648–662.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatemeh Shariati.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadeghi Poor Sheijany, M., Shariati, F., Yaghmaeian Mahabadi, N. et al. Evaluation of heavy metal contamination and ecological risk of soil adjacent to Saravan municipal solid waste disposal site, Rasht, Iran. Environ Monit Assess 192, 757 (2020). https://doi.org/10.1007/s10661-020-08716-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08716-1

Keywords

Navigation