Skip to main content

Advertisement

Log in

Exopolysaccharides and indole-3-acetic acid producing Bacillus safensis strain FN13 potential candidate for phytostabilization of heavy metals

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Microbial population of soils irrigated with industrial wastewater may contain certain exopolysaccharides (EPS) and indole-3-acetic acid (IAA) producing bacterial strains having the ability to tolerate heavy metals along with plant growth–promoting (PGP) traits. As cadmium is one of the most toxic heavy metals for soils, plants, animals, and human beings, the present study was planned to isolate and characterize EPS- and IAA-producing, Cd-tolerant bacterial strains having tolerance against heavy metals along with plant growth–promoting traits. A total of 30 rhizobacterial strains (FN1–FN30) were isolated from rhizosphere soil collected from fields around industrial areas and roadsides irrigated with industrial wastewater. Out of these, eight isolates with the combined ability of IAA production and EPS production were characterized for PGP traits. On the basis of multifarious PGP traits and the results of root colonization assay, three most efficient EPS- and IAA-producing, Cd-tolerant plant growth–promoting strains, i.e., FN13, FN14, and FN16, were selected for multiple metal (Cd, Pb, Ni, and Cu) tolerance test along with quantification of growth, and IAA and EPS production abilities under Cd stress. Increasing levels of Cd stress negatively affected the tested characteristics of these strains, but FN13 showed more stability in growth, IAA production (18.24 μg mL−1), and EPS production (148.99 μg mL−1) compared to other strains under Cd stress. The morphological and biochemical analysis confirmed FN13 as Gram-positive, rod-shaped bacteria with smooth colonies of yellow appearance. The strain FN13 has strong root colonization (3.36 × 106 CFU g−1) ability for mustard seedlings and can solubilize Zn and phosphate along with the production of HCN, ammonia, and siderophores. The 16S rRNA sequencing confirmed it as the Bacillus safensis strain FN13. It can be explored as potential phytostabilizing biofertilizer for heavy metal–contaminated soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahemad, M., & Khan, M. S. (2012). Alleviation of fungicide-induced phytotoxicity in greengram [Vigna radiata (L.) Wilczek] using fungicide-tolerant and plant growth promoting Pseudomonas strain. Saudi Journal of Biological Sciences, 19, 451–459.

    Article  CAS  Google Scholar 

  • Ahmad, I., Akhtar, M. J., Asghar, H. N., Ghafoor, U., & Shahid, M. (2016). Differential effects of plant growth-promoting rhizobacteria on maize growth and cadmium uptake. Journal of Plant Growth Regulation, 35, 303–315.

    Article  CAS  Google Scholar 

  • Andrews, J. M. (2001). Determination of minimum inhibitory concentrations. Journal of Antimicrobial Chemotherapy, 48, 5–16.

    Article  CAS  Google Scholar 

  • Ansari, R. A., Qureshi, A. A., & Ramteke, D. S. (2016). Isolation and characterization of heavy-metal resistant microbes from industrial soil. International Journal of Environmental Sciences, 6(5), 100–110.

    Google Scholar 

  • Ayangbenro, A. S., & Babalola, O. O. (2017). A new strategy for heavy metal polluted environments: a review of microbial biosorbents. International Journal of Environmental Research and Public Health, 14, 94. https://doi.org/10.3390/ijerph14010094.

    Article  CAS  Google Scholar 

  • Batool, R., Yrjala, K., Shaukat, K., Jamil, N., & Hasnain, S. (2015). Production of EPS under Cr(VI) challenge in two indigenous bacteria isolated from a tannery effluent. Journal of Basic Microbiology, 55, 1064–1074.

    Article  CAS  Google Scholar 

  • Benson, H. J. (1990). Microbiological application - a lab manual in general microbiology (5th edn.), W, C. Dubuque: Brown Publishers.

    Google Scholar 

  • Biswas, J. K., Banerjee, A., Sarkar, B., Sarkar, D., Sarkar, S. K., Rai, M., & Vithanage, M. (2020). Exploration of an extracellular polymeric substance from earthworm Gut bacterium (Bacillus licheniformis) for bioflocculation and heavy metal removal potential. Applied Science, 10, 349. https://doi.org/10.3390/app10010349.

    Article  CAS  Google Scholar 

  • Bric, J. M., Bostock, R. M., & Silverstone, S. E. (1991). Rapid in situ assay for indoleacetic acid production by bacteria immobilized on a nitrocellulose membrane. Applied and Environmental Microbiology, 57, 535–538.

    Article  CAS  Google Scholar 

  • Bruins, M. R., Kapil, S., & Oehme, F. W. (2000). Microbial resistance to metals in the environment. Ecotoxicology and Environmental Safety, 45(3), 198–207.

    Article  CAS  Google Scholar 

  • Cappuccino, J. G., & Sherman, N. (2013). Biochemical activities of microorganisms. In Microbiology, a laboratory manual. California: The Benjamin/Cummings Publishing Co..

    Google Scholar 

  • Chaoua, S., Boussaa, S., Gharmali, A. E., & Boumezzough, A. (2019). Impact of irrigation with wastewater on accumulation of heavy metals in soil and crops in the region of Marrakech in Morocco. Journal of the Saudi Society of Agricultural Sciences, 18(4), 429–436.

    Article  Google Scholar 

  • Chen, Y., Chao, Y., Li, Y., Lin, Q., Bai, J., Tang, L., Wang, S., Ying, R., & Qiu, R. (2016). Survival strategies of the plant-associated bacterium Enterobacter sp. strain EG16 under cadmium stress. Applied and Environmental Microbiology, 82, 1734–1744.

    Article  CAS  Google Scholar 

  • Chibuike, G. U., & Obiora, S. C. (2014). Heavy metal polluted soils: effect on plants and bioremediation methods. Applied and Environmental Soil Science, 2014, 1–12.

    Article  CAS  Google Scholar 

  • Cocozza, C., Trupiano, D., Lustrato, G., Alfano, G., Vitullo, D., Falasca, A., Lomaglio, T., De Felice, V., Lima, G., Ranalli, G., Scippa, S., & Tognetti, R. (2015). Challenging synergistic activity of poplar-bacteria association for the Cd phytostabilization. Environmental Science and Pollution Research, 22, 19546–19561.

    Article  CAS  Google Scholar 

  • Das, J., & Sarkar, P. (2018). Remediation of arsenic in mung bean (Vigna radiata) with growth enhancement by unique arsenic-resistant bacterium Acinetobacter lwoffii. Science of the Total Environment, 624, 1106–1118.

    Article  CAS  Google Scholar 

  • Dimkpa, C. O., Svatos, A., Dabrowska, P., Schmidt, A., Boland, W., & Kothe, E. (2008). Involvement of siderophores in the reduction of metal-induced inhibition of auxin synthesis in Streptomyces spp. Chemosphere, 74, 19–25.

    Article  CAS  Google Scholar 

  • Dubois, M., Gilles, K. A., Hamilton, J. K., et al. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28, 350–356.

    Article  CAS  Google Scholar 

  • Faiz, Y., Tufail, M., Javed, M. T., Chauhadry, M., & Siddique, N. (2009). Road dust pollution of Cd, Cu, Ni, Pb, and Zn along Islamabad expressway, Pakistan. Microchemical Journal, 92, 186–192.

    Article  CAS  Google Scholar 

  • Farid, G., Sarwar, N., Saifullah, A., & A., & Ghafoor, A. (2015). Heavy metals (Cd, Ni and Pb) contamination of soils, plants and waters in Madina town of Faisalabad metropolitan and preparation of GIS based maps. Advances in Crop Science and Technology, 4, 199. https://doi.org/10.4172/2329-8863.1000199.

    Article  CAS  Google Scholar 

  • Fasim, F., Ahmed, N., Parsons, R., & Gadd, G. M. (2002). Solubilization of zinc salts by a bacterium isolated from the air environment of a tannery. FEMS Microbiology Letters, 213, 1–6.

    Article  CAS  Google Scholar 

  • Ferronato, N., & Torretta, V. (2019). Waste mismanagement in developing countries: a review of global issues. International Journal of Environmental Research and Public Health, 16(6), 1060. https://doi.org/10.3390/ijerph16061060.

    Article  CAS  Google Scholar 

  • Ghani, A., Shah, A. U., & Akhtar, U. (2010). Effect of lead toxicity on growth, chlorophyll and lead (Pb2+) contents of two varieties of maize (Zea mays L.). Pakistan Journal of Nutrition, 9(9), 887–891.

    Article  CAS  Google Scholar 

  • Ghorani-Azam, A., Riahi-Zanjani, B., & Balali-Mood, M. (2016). Effects of air pollution on human health and practical measures for prevention in Iran. Journal of Research in Medical Sciences, 21, 65. https://doi.org/10.4103/1735-1995.189646.

    Article  CAS  Google Scholar 

  • Glick, B. R. (2010). Using soil bacteria to facilitate phytoremediation. Biotechnology Advances, 28, 367–374.

    Article  CAS  Google Scholar 

  • Gupta, P., & Diwan, B. (2017). Bacterial exopolysaccharide mediated heavy metal removal: a review on biosynthesis, mechanism and remediation strategies. Biotechnology Reports, 13, 58–71.

    Article  Google Scholar 

  • Hamidpour, M., Nemati, H., Abbaszadeh Dahaji, P., & Roosta, H. R. (2019). Effects of plant growth-promoting bacteria on EDTA-assisted phytostabilization of heavy metals in a contaminated calcareous soil. Environmental Geochemistry and Health, 42, 2019–2545. https://doi.org/10.1007/s10653-019-00422-3.

    Article  CAS  Google Scholar 

  • Hussain, S., Devers-Lamrani, M., El-Azhari, N., & Martin-Laurent, F. (2011). Isolation and characterization of an isoproturon mineralizing Sphingomonas sp. strain SH from a French agricultural soil. Biodegradation, 22, 637–650.

    Article  CAS  Google Scholar 

  • Kartik, V. P., Jinal, H. N., & Amaresan, N. (2016). Characterization of cadmium resistant bacteria for its potential in promoting plant growth and cadmium accumulation in Sesbania bispinosa root. International Journal of Phytoremediation, 18, 1061–1066.

    Article  CAS  Google Scholar 

  • Khalid, S., Shahid, M., Natasha, Bibi, I., Sarwar, T., Shah, A. H., & Niazi, N. K. (2018). A Review of environmental contamination and health risk assessment of wastewater use for crop irrigation with a focus on low and high-income countries. International Journal of Environmental Research and Public Health, 15(5), 895. https://doi.org/10.3390/ijerph15050895.

    Article  CAS  Google Scholar 

  • Khan, N., & Bano, A. (2019). Exopolysaccharide producing rhizobacteria and their impact on growth and drought tolerance of wheat grown under rainfed conditions. PLoS One, 14, e0222302. https://doi.org/10.1371/journal.pone.0222302.

    Article  CAS  Google Scholar 

  • Khanna, K., Jamwal, V. L., Gandhi, S. G., Ohri, P., & Bhardwaj, R. (2019). Metal resistant PGPR lowered Cd uptake and expression of metal transporter genes with improved growth and photosynthetic pigments in Lycopersicon esculentum under metal toxicity. Scientific Reports, 9, 5855. https://doi.org/10.1038/s41598-019-41899-3.

    Article  CAS  Google Scholar 

  • Kloepper, J. W., Rodriguez-Kabana, R., Zehnder, G. W., Murphy, J., Sikora, E., & Fernandez, C. (1999). Plant root-bacterial interactions in biological control of soilborne diseases and potential extension to systemic and foliar diseases. Australasian Plant Pathology, 28, 27–33. https://doi.org/10.1071/AP99003.

    Article  Google Scholar 

  • Kodali, V. P., & Sen, R. (2008). Antioxidant and free radical scavenging activities of an exopolysaccharide from a probiotic bacterium. Biotechnology Journal, 3, 245–251.

    Article  CAS  Google Scholar 

  • Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33, 1870–1874.

    Article  CAS  Google Scholar 

  • Lambrecht, M., Okon, Y., Vande Broek, A., & Vanderleyden, J. (2017). Indole-3-acetic acid: a reciprocal signalling molecule in bacteria-plant interactions. Trends in Microbiology, 8, 298–300.

    Article  Google Scholar 

  • Li, H., Wei, M., Min, W., Gao, Y., Liu, X., & Liu, J. (2016). Removal of heavy metal ions in aqueous solution by exopolysaccharides from Athelia rolfsii. Biocatalysis and Agricultural Biotechnology, 6, 28–32.

    Article  Google Scholar 

  • Lorck, H. (1948). Production of hydrocyanic acid by bacteria. Physiologia Plantarum, 1, 142–146.

    Article  CAS  Google Scholar 

  • Ma, Y., Rajkumar, M., & Freitas, H. (2009). Improvement of plant growth and nickel uptake by nickel resistant-plant-growth promoting bacteria. Journal of Hazardous Materials, 166, 1154–1161.

    Article  CAS  Google Scholar 

  • Mapanda, F., Mangwayana, E. N., Nyamangara, J., & Giller, K. E. (2005). The effect of long term irrigation using waste water on heavy metal content of soil under vegetables in Harare, Zimbawe. Agriculture, Ecosystems and Environment, 107, 151–165.

    Article  CAS  Google Scholar 

  • Marchal, M., Briandet, R., Koechler, S., Kammerer, B., & Bertin, P. N. (2010). Effect of arsenite on swimming motility delays surface colonization in Herminiimonas arsenicoxydans. Microbiology, 156, 2336–2342.

    Article  CAS  Google Scholar 

  • Marchal, M., Briandet, R., Halter, D., Koechler, S., DuBow, M. S., Lett, M.-C., & Bertin, P. N. (2011). Subinhibitory arsenite concentrations lead to population dispersal in Thiomonas sp. PLoS One, 6(2011), e23181.

    Article  CAS  Google Scholar 

  • Marzan, L. W., Hossain, M., Mina, S. A., Akter, Y., Masudul, A. M., & Chowdhury, A. (2017). Isolation and biochemical characterization of heavy-metal resistant bacteria from tannery effluent in Chittagong city, Bangladesh: bioremediation viewpoint. The Egyptian Journal of Aquatic Research, 43(1), 65–74.

    Article  Google Scholar 

  • Nawaz, A., Khurshid, K., Arif, M. S., & Ranjha, A. M. (2006). Accumulation of heavy metals in soil and rice plants (Oryza sativa L) irrigated with industrial effluents. International Journal of Agriculture and Biology, 8(3), 391–393.

    CAS  Google Scholar 

  • Ojuederie, O. B., & Babalola, O. O. (2017). Microbial and plant-assisted bioremediation of heavy metal polluted environments: A review. International Journal of Environmental Research and Public Health, 14(12), 1504. https://doi.org/10.3390/ijerph14121504.

    Article  CAS  Google Scholar 

  • Pandey, N., & Bhatt, R. (2016). Role of soil associated Exiguobacterium in reducing arsenic toxicity and promoting plant growth in Vigna radiata. European Journal of Soil Biology, 75, 142–150.

    Article  CAS  Google Scholar 

  • Pandey, S., Saha, P., Barai, P. K., & Maiti, T. K. (2010). Characterization of a Cd2+- resistant strain of Ochrobactrum sp. isolated from slag disposal site of an iron and steel factory. Current Microbiology, 61, 106–111.

    Article  CAS  Google Scholar 

  • Park, J. H., Bolan, N., Megharaj, M., & Naidu, R. (2011). Isolation of phosphate solubilizing bacteria and their potential for lead immobilization in soil. Journal of Hazardous Materials, 185(2-3), 829–836.

    Article  CAS  Google Scholar 

  • Pikovskaya, R. I. (1948). Mobilization of phosphorus in soil connection with the vital activity of some microbial species. Microbiologiya, 17, 362–370.

    CAS  Google Scholar 

  • Pramanik, K., Mitra, S., Sarkar, A., Soren, T., & Maiti, T. K. (2017). Characterization of cadmium-resistant Klebsiella pneumoniae MCC 3091 promoted rice seedling growth by alleviating phytotoxicity of cadmium. Environmental Science and Pollution Research, 24, 24419–24437.

    Article  CAS  Google Scholar 

  • Priyalaxmi, R., Murugan, A., Raja, P., & Raj, K. D. (2014). Bioremediation of cadmium by Bacillus safensis (JX126862), a marine bacterium isolated from mangrove sediments. International Journal of Current Microbiology and Applied Sciences, 3(12), 326–335.

    Google Scholar 

  • Quartacci, M. F., Argilla, A., Baker, A. J. M., & Navari-Izzo, F. (2006). Phytoextraction of metals from a multiply contaminated soil by Indian mustard. Chemosphere, 63, 918–925.

    Article  CAS  Google Scholar 

  • Rajkumar, M., Ae, N., Prasad, M. N. V., & Freitas, H. (2010). Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends in Biotechnology, 28, 142–149.

    Article  CAS  Google Scholar 

  • Rajkumar, M., Ma, Y., & Freitas, H. (2013). Improvement of Ni phytostabilization by inoculation of Ni resistant Bacillus megaterium SR28C. Journal of Environmental Management, 128, 973–980.

    Article  CAS  Google Scholar 

  • Rodríguez, H., & Fraga, R. (1999). Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advances, 17, 319–339.

    Article  Google Scholar 

  • Saitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406–425.

    CAS  Google Scholar 

  • Schwyn, B., & Neilands, J. B. (1987). Universal CAS assay for the detection and determination of siderophores. Analytical Biochemistry, 160, 47–56. https://doi.org/10.1016/0003-2697(87)90612-9.

    Article  CAS  Google Scholar 

  • Simons, M., Van Der Bij, A. J., Brand, I., De Weger, L. A., Wijffelman, C. A., & Lugtenberg, B. J. (1996). Gnotobiotic system for studying rhizosphere colonization by plant growth-promoting Pseudomonas bacteria. Molecular Plant Microbe Interactions, 9, 600–607.

    Article  CAS  Google Scholar 

  • Singh, R., Pathak, B., & Fulekar, M. H. (2015). Characterization of PGP traits by heavy metals tolerant Pseudomonas putida and Bacillus safensis strain isolated from rhizospheric zone of weed (Phyllanthus urinaria) and its efficiency in Cd and Pb removal. International Journal of Current Microbiology and Applied Sciences, 4, 954–975.

    CAS  Google Scholar 

  • Steel, R. G. D., Torrie, J. H., & Dicky, D. A. (1997). Principles and procedures of statistics a biometrical approach (3rd ed.pp. 204–227). Singapore: McGraw Hill Book International Co..

    Google Scholar 

  • Tallgren, A. H., Airaksinen, U., von Weissenberg, R., Ojamo, H., Kuusisto, J., & Leisola, M. (1999). Exopolysaccharide producing bacteria from sugar beets. Applied and Environmental Microbiology, 65(2), 862–864.

    Article  CAS  Google Scholar 

  • Tamura, K., Nei, M., & Kumar, S. (2004). Prospects for inferring very large phylogenies by using the neighbor-joining method. Proceedings of National Academy of Sciences, USA, 101, 11030–11035.

    Article  CAS  Google Scholar 

  • Tirry, N., Joutey, N.T., Sayel, H., Kouchou, A., Bahafid, W., Asri, M., & El Ghachtouli, N. (2018). Screening of plant growth promoting traits in heavy metals resistant bacteria: Prospects in phytoremediation. Journal, Genetic Engineering & Biotechnology, 16(2), 613–619

  • Tirumalai, M. R., Stepanov, V. G., Wünsche, A., Montazari, S., Gonzalez, R. O., Venkateswaran, K., & Fox, G. E. (2018). Bacillus safensis FO-36b and Bacillus pumilus SAFR-032: a whole genome comparison of two spacecraft assembly facility isolates. BMC Microbioogy, 18, 57 (2018). https://doi.org/10.1186/s12866-018-1191-y.

    Article  CAS  Google Scholar 

  • Tiwari, S., & Lata, C. (2018). Heavy metal stress, signaling, and tolerance due to plant-associated microbes: an overview. Frontiers in Plant Sciences, 9, 452. https://doi.org/10.3389/fpls.2018.00452.

    Article  Google Scholar 

  • Tran, T. A., & Popova, L. P. (2013). Functions and toxicity of cadmium in plants: recent advances and future prospects. Turkish Journal Botany, 37, 1–13.

    CAS  Google Scholar 

  • Treesubsuntorn, C., Dhurakit, P., Khaksar, G., & Thiravetyan, P. (2018). Effect of microorganisms on reducing cadmium uptake and toxicity in rice (Oryza sativa L.). Environmental Science and Pollution Research International, 25(26), 25690–25701.

    Article  CAS  Google Scholar 

  • Vela-Cano, M., Castellano-Hinojosa, A., Fernández Vivas, A., & Victoria Martínez, M. (2014). Effect of heavy metals on the growth of bacteria isolated from sewage sludge compost tea. Advances in Microbiology, 4, 644–655.

    Article  CAS  Google Scholar 

  • Wan, Y., Luo, S., Chen, J., Xiao, X., Chen, L., Zeng, G., Liu, C., & He, Y. (2012). Effect of endophyte-infection on growth parameters and cd-induced phytotoxicity of Cd-hyperaccumulator Solanum nigrum L. Chemosphere., 89, 743–750.

    Article  CAS  Google Scholar 

  • Wang, S., Teng, S., & Fan, M. (2010). Interaction between heavy metals and aerobic granular sludge. In S. K. Sarkar (Ed.), Environmental Management (pp. 173–188). Croatia: Sciyo.

    Google Scholar 

  • Yang, Q., Tu, S., Wang, G., Liao, X., & Yan, X. (2012). Effectiveness of applying arsenate reducing bacteria to enhance arsenic removal from polluted soils by Pteris vittata L. International Journal of Phytoremediation, 14, 89–99.

    Article  Google Scholar 

  • Zafar, S., Aqil, F., & Ahmad, I. (2007). Metal tolerance and biosorption potential of filamentous fungi isolated from metal contaminated agricultural soil. Bioresource Technology, 98(13), 2557–2561.

    Article  CAS  Google Scholar 

  • Zwolak, A., Sarzyńska, M., Szpyrka, E., & Stawarczyk, K. (2019). Sources of soil pollution by heavy metals and their accumulation in vegetables: a review. Water Air and Soil Pollution, 230, 164 (2019). https://doi.org/10.1007/s11270-019-4221-y.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the research facilities provided by the Soil Microbiology and Biotechnology Laboratory, Department of Soil Science, the Islamia University of Bahawalpur. The first author also acknowledges the Department of Agriculture (Research), Government of the Punjab, for the grant of study leave to complete the PhD degree from the Islamia University of Bahawalpur.

Availability of data and material

The authors insured that the data, figures, and tables presented in manuscript are transparent, comply with field standards, and were never published before. The original data are available and will be provided on author’s request. Relevant data is submitted on the NCBI website and accession no. (MT229105) included in the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farheen Nazli.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Ethics approval

Not applicable

Consent to participate

Not applicable

Consent for publication

Not applicable

Code availability

Not applicable

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazli, F., Jamil, M., Hussain, A. et al. Exopolysaccharides and indole-3-acetic acid producing Bacillus safensis strain FN13 potential candidate for phytostabilization of heavy metals. Environ Monit Assess 192, 738 (2020). https://doi.org/10.1007/s10661-020-08715-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08715-2

Keywords

Navigation