Skip to main content
Log in

Effective disposal of methylene blue using green immobilized silver nanoparticles on graphene oxide and reduced graphene oxide sheets through one-pot synthesis

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

This study reveals the feasibility of exploring highly efficient, cost-effective, and stable green adsorbents for the treatment of contaminated water. Here silver nanoparticles (AgNPs) were immobilized onto nanosheets of graphene oxide (GO) through in situ reduction process using green tea aqueous extract. GO reduction to reduced graphene oxide (rGO) and AgNPs decoration on rGO also occurred simultaneously. The impacts of the extract concentration, contact time, and temperature on the synthesis process have been investigated. The synthesized nanocomposites were examined by XRD, FTIR, Raman, SEM, TEM, and TGA. The GO nanosheets were decorated by AgNPs with a crystalline structure and an average particle size of 25 ± 3 nm. The temperature and the extract concentration were considerably affecting the type of the resulting nanocomposites. The GO/Ag nanocomposites were formed at room temperature (27 °C) using different extract concentration (2–18% (v/v)), while the rGO/Ag nanocomposite was formed only at a higher temperature (95 °C) with higher extract concentration (18%). The methylene blue (MB) dye was picked as a water pollutant to explore the adsorption ability of the nanocomposites. The adsorption behavior of the GO/Ag nanocomposites was examined under diverse factors (MB concentration, adsorbent dosage, pH, and contact time) to achieve optimization. The adsorption data concurs with Langmuir isotherm giving maximum adsorption up to 633 mg g−1. Adsorption kinetics demonstrate good pseudo-second-order compliance. Spontaneous and endothermic nature of adsorption was affirmed via thermodynamic parameters. The nanocomposites could be utilized as eco-friendly and reliable adsorbents in wastewater treatment, as a result of their exceptional productivity and reusing potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abboud, M., Sahlabji, T., Haija, M. A., El-Zahhar, A. A., Bondock, S., Ismail, I., et al. (2020). Synthesis and characterization of lignosulfonate/amino-functionalized SBA-15 nanocomposites for the adsorption of methylene blue from wastewater. New Journal of Chemistry, 44(6), 2291–2302.

    Google Scholar 

  • Aboelfetoh, E. F., El-Shenody, R. A., & Ghobara, M. M. (2017). Eco-friendly synthesis of silver nanoparticles using green algae (Caulerpa serrulata): Reaction optimization, catalytic and antibacterial activities. Environmental Monitoring and Assessment, 189(7), 349.

    Google Scholar 

  • Aboelfetoh, E. F., Elhelaly, A. A., & Gemeay, A. H. (2018). Synergistic effect of Cu (II) in the one-pot synthesis of reduced graphene oxide (rGO/CuxO) nanohybrids as adsorbents for cationic and anionic dyes. Journal of Environmental Chemical Engineering, 6(1), 623–634.

    CAS  Google Scholar 

  • Aboubaraka, A. E., Aboelfetoh, E. F., & Ebeid, E.-Z. M. (2017). Coagulation effectiveness of graphene oxide for the removal of turbidity from raw surface water. Chemosphere, 181, 738–746.

    CAS  Google Scholar 

  • Agnihotri, S., Mukherji, S., & Mukherji, S. (2014). Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Advances, 4(8), 3974–3983.

    CAS  Google Scholar 

  • Ahmadzadeh Tofighy, M., & Mohammadi, T. (2014). Methylene blue adsorption onto granular activated carbon prepared from Harmal seeds residue. Desalination and Water Treatment, 52(13–15), 2643–2653.

    CAS  Google Scholar 

  • Allen, H. J., Impellitteri, C. A., Macke, D. A., Heckman, J. L., Poynton, H. C., Lazorchak, J. M., Govindaswamy, S., Roose, D. L., & Nadagouda, M. N. (2010). Effects from filtration, capping agents, and presence/absence of food on the toxicity of silver nanoparticles to Daphnia magna. Environmental Toxicology and Chemistry, 29(12), 2742–2750.

    Google Scholar 

  • Beyene, H. D., Werkneh, A. A., Bezabh, H. K., & Ambaye, T. G. (2017). Synthesis paradigm and applications of silver nanoparticles (AgNPs), a review. Sustainable Materials and Technologies, 13, 18–23.

    CAS  Google Scholar 

  • Chieng, H. I., Priyantha, N., & Lim, L. B. (2015). Effective adsorption of toxic brilliant green from aqueous solution using peat of Brunei Darussalam: Isotherms, thermodynamics, kinetics and regeneration studies. RSC Advances, 5(44), 34603–34615.

    CAS  Google Scholar 

  • Chook, S. W., Chia, C. H., Zakaria, S., Ayob, M. K., Chee, K. L., Huang, N. M., et al. (2012). Antibacterial performance of Ag nanoparticles and AgGO nanocomposites prepared via rapid microwave-assisted synthesis method. Nanoscale Research Letters, 7(1), 1–7.

    Google Scholar 

  • de Moraes, A. C. M., Lima, B. A., de Faria, A. F., Brocchi, M., & Alves, O. L. (2015). Graphene oxide-silver nanocomposite as a promising biocidal agent against methicillin-resistant Staphylococcus aureus. International Journal of Nanomedicine, 10, 6847.

    Google Scholar 

  • Długosz, O., Chwastowski, J., & Banach, M. (2020). Hawthorn berries extract for the green synthesis of copper and silver nanoparticles. Chemical Papers, 74(1), 239–252.

    Google Scholar 

  • Dotto, G., dos Santos, J. N., Rosa, R., Pinto, L., Pavan, F., & Lima, E. (2015). Fixed bed adsorption of methylene blue by ultrasonic surface modified chitin supported on sand. Chemical Engineering Research and Design, 100, 302–310.

    CAS  Google Scholar 

  • Dubale, A. A., Su, W.-N., Tamirat, A. G., Pan, C.-J., Aragaw, B. A., Chen, H.-M., et al. (2014). The synergetic effect of graphene on Cu 2 O nanowire arrays as a highly efficient hydrogen evolution photocathode in water splitting. Journal of Materials Chemistry A, 2(43), 18383–18397.

    CAS  Google Scholar 

  • El-Sharkaway, E., Kamel, R. M., El-Sherbiny, I. M., & Gharib, S. S. (2019). Removal of methylene blue from aqueous solutions using polyaniline/graphene oxide or polyaniline/reduced graphene oxide composites. Environmental Technology, (just-accepted), 1-35

  • Ferrero, F. (2010). Adsorption of methylene blue on magnesium silicate: Kinetics, equilibria and comparison with other adsorbents. Journal of Environmental Sciences, 22(3), 467–473.

    CAS  Google Scholar 

  • Fujiki, H., Watanabe, T., Sueoka, E., Rawangkan, A., & Suganuma, M. (2018). Cancer prevention with green tea and its principal constituent, EGCG: From early investigations to current focus on human cancer stem cells. Molecules and Cells, 41(2), 73–82.

    CAS  Google Scholar 

  • Gao, J. J., Qin, Y. B., Zhou, T., Cao, D. D., Xu, P., Hochstetter, D., & Wang, Y. F. (2013). Adsorption of methylene blue onto activated carbon produced from tea (Camellia sinensis L.) seed shells: Kinetics, equilibrium, and thermodynamics studies. Journal of Zhejiang University. Science. B, 14(7), 650–658. https://doi.org/10.1631/jzus.B12a0225.

    Article  CAS  Google Scholar 

  • Gemeay, A. H., Aboelfetoh, E. F., & El-Sharkawy, R. G. (2018a). Immobilization of green synthesized silver nanoparticles onto amino-functionalized silica and their application for indigo carmine dye removal. Water, Air, & Soil Pollution, 229(1), 16.

    Google Scholar 

  • Gemeay, A. H., Elsharkawy, R. G., & Aboelfetoh, E. F. (2018b). Graphene oxide/polyaniline/manganese oxide ternary nanocomposites, facile synthesis, characterization, and application for indigo carmine removal. Journal of Polymers and the Environment, 26(2), 655–669.

    CAS  Google Scholar 

  • Ghaedi, M., Sadeghian, B., Pebdani, A. A., Sahraei, R., Daneshfar, A., & Duran, C. (2012). Kinetics, thermodynamics and equilibrium evaluation of direct yellow 12 removal by adsorption onto silver nanoparticles loaded activated carbon. Chemical Engineering Journal, 187, 133–141.

    CAS  Google Scholar 

  • Haldorai, Y., Kim, B.-K., Jo, Y.-L., & Shim, J.-J. (2014). Ag@ graphene oxide nanocomposite as an efficient visible-light plasmonic photocatalyst for the degradation of organic pollutants: A facile green synthetic approach. Materials Chemistry and Physics, 143(3), 1452–1461.

    CAS  Google Scholar 

  • Haque, S., Gain, S., Gupta, K., & Ghosh, U. C. (2019). Methylene blue (a cationic dye) adsorption performance of graphene oxide fabricated Fe-Al bimetal oxide composite from water. Water Quality Research Journal, 54(1), 57–69.

    CAS  Google Scholar 

  • Hashemi, F., Tasharrofi, N., & Saber, M. M. (2020). Green synthesis of silver nanoparticles using Teucrium polium leaf extract and assessment of their antitumor effects against MNK45 human gastric cancer cell line. Journal of Molecular Structure, 127889.

  • Hebeish, A., El-Rafie, M., Abdel-Mohdy, F., Abdel-Halim, E., & Emam, H. E. (2010). Carboxymethyl cellulose for green synthesis and stabilization of silver nanoparticles. Carbohydrate Polymers, 82(3), 933–941.

    CAS  Google Scholar 

  • Hegyesi, N., Vad, R. T., & Pukánszky, B. (2017). Determination of the specific surface area of layered silicates by methylene blue adsorption: The role of structure, pH and layer charge. Applied Clay Science, 146, 50–55.

    CAS  Google Scholar 

  • Heidarizad, M., & Şengör, S. S. (2016). Synthesis of graphene oxide/magnesium oxide nanocomposites with high-rate adsorption of methylene blue. Journal of Molecular Liquids, 224, 607–617.

    CAS  Google Scholar 

  • Hou, C., Zhang, Q., Wang, H., & Li, Y. (2011). Functionalization of PNIPAAm microgels using magnetic graphene and their application in microreactors as switch materials. Journal of Materials Chemistry, 21(28), 10512–10517.

    CAS  Google Scholar 

  • Hou, I.-C., Amarnani, S., Chong, M. T., & Bishayee, A. (2013). Green tea and the risk of gastric cancer: Epidemiological evidence. World Journal of Gastroenterology, 19(24), 3713–3722.

    Google Scholar 

  • Huang, J., Zhang, L., Chen, B., Ji, N., Chen, F., Zhang, Y., & Zhang, Z. (2010). Nanocomposites of size-controlled gold nanoparticles and graphene oxide: Formation and applications in SERS and catalysis. Nanoscale, 2(12), 2733–2738.

    CAS  Google Scholar 

  • Huang, N., Lim, H., Chia, C. H., Yarmo, M. A., & Muhamad, M. (2011). Simple room-temperature preparation of high-yield large-area graphene oxide. International Journal of Nanomedicine, 6, 3443.

    CAS  Google Scholar 

  • Huang, L., Yang, H., Zhang, Y., & Xiao, W. (2016). Study on synthesis and antibacterial properties of Ag NPs/GO nanocomposites. Journal of Nanomaterials, 2016.

  • Ismail, M. (2020). Green synthesis and characterizations of copper nanoparticles. Materials Chemistry and Physics, 240, 122283.

    CAS  Google Scholar 

  • Konicki, W., Aleksandrzak, M., & Mijowska, E. (2017). Equilibrium, kinetic and thermodynamic studies on adsorption of cationic dyes from aqueous solutions using graphene oxide. Chemical Engineering Research and Design, 123, 35–49.

    CAS  Google Scholar 

  • Kooh, M. R. R., Lim, L. B., Lim, L. H., & Dahri, M. K. (2016). Separation of toxic rhodamine B from aqueous solution using an efficient low-cost material, Azolla pinnata, by adsorption method. Environmental Monitoring and Assessment, 188(2), 1–15.

    CAS  Google Scholar 

  • Kumar, S. V., Huang, N. M., Lim, H. N., Marlinda, A., Harrison, I., & Chia, C. H. (2013). One-step size-controlled synthesis of functional graphene oxide/silver nanocomposites at room temperature. Chemical Engineering Journal, 219, 217–224.

    Google Scholar 

  • Lee, S. H., & Jun, B.-H. (2019). Silver nanoparticles: Synthesis and application for nanomedicine. International Journal of Molecular Sciences, 20(4), 865.

    CAS  Google Scholar 

  • Lee, L.-S., Kim, S.-H., Kim, Y.-B., & Kim, Y.-C. (2014). Quantitative analysis of major constituents in green tea with different plucking periods and their antioxidant activity. Molecules, 19(7), 9173–9186.

    Google Scholar 

  • Li, L., Liu, X. L., Geng, H. Y., Hu, B., Song, G. W., & Xu, Z. S. (2013a). A MOF/graphite oxide hybrid (MOF: HKUST-1) material for the adsorption of methylene blue from aqueous solution. Journal of Materials Chemistry A, 1(35), 10292–10299.

    CAS  Google Scholar 

  • Li, Y., Du, Q., Liu, T., Sun, J., Wang, Y., Wu, S., et al. (2013b). Methylene blue adsorption on graphene oxide/calcium alginate composites. Carbohydrate Polymers, 95(1), 501–507.

    CAS  Google Scholar 

  • Lightcap, I. V., Kosel, T. H., & Kamat, P. V. (2010). Anchoring semiconductor and metal nanoparticles on a two-dimensional catalyst mat. Storing and shuttling electrons with reduced graphene oxide. Nano Letters, 10(2), 577–583.

    CAS  Google Scholar 

  • Liu, C.-C., Xu, H., Wang, L., & Qin, X. (2017). Facile one-pot green synthesis and antibacterial activities of GO/Ag nanocomposites. Acta Metallurgica Sinica (English Letters), 30(1), 36–44.

    CAS  Google Scholar 

  • Madrakian, T., Afkhami, A., Ahmadi, M., & Bagheri, H. (2011). Removal of some cationic dyes from aqueous solutions using magnetic-modified multi-walled carbon nanotubes. Journal of Hazardous Materials, 196, 109–114.

    CAS  Google Scholar 

  • Mahmoud, M. E., Amira, M. F., Seleim, S. M., & Mohamed, A. K. (2017). Adsorption isotherm models, kinetics study, and thermodynamic parameters of Ni (II) and Zn (II) removal from water using the LbL technique. Journal of Chemical & Engineering Data, 62(2), 839–850.

    CAS  Google Scholar 

  • Marrakchi, F., Khanday, W., Asif, M., & Hameed, B. (2016). Cross-linked chitosan/sepiolite composite for the adsorption of methylene blue and reactive orange 16. International Journal of Biological Macromolecules, 93, 1231–1239.

    CAS  Google Scholar 

  • Martínez-Orozco, R., Rosu, H., Lee, S.-W., & Rodríguez-González, V. (2013). Understanding the adsorptive and photoactivity properties of Ag-graphene oxide nanocomposites. Journal of Hazardous Materials, 263, 52–60.

    Google Scholar 

  • Maruthapandi, M., Eswaran, L., Luong, J. H., & Gedanken, A. (2020). Sonochemical preparation of polyaniline@ TiO2 and polyaniline@ SiO2 for the removal of anionic and cationic dyes. Ultrasonics Sonochemistry, 62, 104864.

    Google Scholar 

  • Montes-Navajas, P., Asenjo, N. G., Santamaría, R., Menendez, R., Corma, A., & García, H. (2013). Surface area measurement of graphene oxide in aqueous solutions. Langmuir, 29(44), 13443–13448.

    CAS  Google Scholar 

  • Nasrullah, A., Bhat, A., Naeem, A., Isa, M. H., & Danish, M. (2018). High surface area mesoporous activated carbon-alginate beads for efficient removal of methylene blue. International Journal of Biological Macromolecules, 107, 1792–1799.

    CAS  Google Scholar 

  • Pal, U., Sandoval, A., Madrid, S. I. U., Corro, G., Sharma, V., & Mohanty, P. (2016). Mixed titanium, silicon, and aluminum oxide nanostructures as novel adsorbent for removal of rhodamine 6G and methylene blue as cationic dyes from aqueous solution. Chemosphere, 163, 142–152.

    CAS  Google Scholar 

  • Razzaque, S., Hussain, S. Z., Hussain, I., & Tan, B. (2016). Design and utility of metal/metal oxide nanoparticles mediated by thioether end-functionalized polymeric ligands. Polymers, 8(4), 156.

    Google Scholar 

  • Rolim, W. R., Pelegrino, M. T., de Araújo Lima, B., Ferraz, L. S., Costa, F. N., Bernardes, J. S., et al. (2019). Green tea extract mediated biogenic synthesis of silver nanoparticles: Characterization, cytotoxicity evaluation and antibacterial activity. Applied Surface Science, 463, 66–74.

    CAS  Google Scholar 

  • Rónavári, A., Kovács, D., Igaz, N., Vágvölgyi, C., Boros, I. M., Kónya, Z., et al. (2017). Biological activity of green-synthesized silver nanoparticles depends on the applied natural extracts: A comprehensive study. International Journal of Nanomedicine, 12, 871.

    Google Scholar 

  • Saini, J., Garg, V., & Gupta, R. (2018). Removal of methylene blue from aqueous solution by Fe3O4@ Ag/SiO2 nanospheres: Synthesis, characterization and adsorption performance. Journal of Molecular Liquids, 250, 413–422.

    CAS  Google Scholar 

  • Saiphaneendra, B., Saxena, T., Singh, S. A., Madras, G., & Srivastava, C. (2017). Synergistic effect of co-existence of hematite (α-Fe2O3) and magnetite (Fe3O4) nanoparticles on graphene sheet for dye adsorption. Journal of Environmental Chemical Engineering, 5(1), 26–37.

    CAS  Google Scholar 

  • Salem, W., Leitner, D. R., Zingl, F. G., Schratter, G., Prassl, R., Goessler, W., et al. (2015). Antibacterial activity of silver and zinc nanoparticles against Vibrio cholerae and enterotoxic Escherichia coli. International Journal of Medical Microbiology, 305(1), 85–95.

  • Sang, S., Li, D., Zhang, H., Sun, Y., Jian, A., Zhang, Q., et al. (2017). Facile synthesis of AgNPs on reduced graphene oxide for highly sensitive simultaneous detection of heavy metal ions. RSC Advances, 7(35), 21618–21624.

    CAS  Google Scholar 

  • Sengupta, A., Mallick, S., & Bahadur, D. (2017). Tetragonal nanostructured zirconia modified hematite mesoporous composite for efficient adsorption of toxic cations from wastewater. Journal of Environmental Chemical Engineering, 5(5), 5285–5292.

    CAS  Google Scholar 

  • Shao, Y., Wang, X., Kang, Y., Shu, Y., Sun, Q., & Li, L. (2014). Application of Mn/MCM-41 as an adsorbent to remove methyl blue from aqueous solution. Journal of Colloid and Interface Science, 429, 25–33.

    CAS  Google Scholar 

  • Shao, W., Liu, X., Min, H., Dong, G., Feng, Q., & Zuo, S. (2015). Preparation, characterization, and antibacterial activity of silver nanoparticle-decorated graphene oxide nanocomposite. ACS Applied Materials & Interfaces, 7(12), 6966–6973.

    CAS  Google Scholar 

  • Sharma, P., Hussain, N., Borah, D. J., & Das, M. R. (2013). Kinetics and adsorption behavior of the methyl blue at the graphene oxide/reduced graphene oxide nanosheet–water interface: A comparative study. Journal of Chemical & Engineering Data, 58(12), 3477–3488.

    CAS  Google Scholar 

  • Sobon, G., Sotor, J., Jagiello, J., Kozinski, R., Zdrojek, M., Holdynski, M., Paletko, P., Boguslawski, J., Lipinska, L., & Abramski, K. M. (2012). Graphene oxide vs. reduced graphene oxide as saturable absorbers for Er-doped passively mode-locked fiber laser. Optics Express, 20(17), 19463–19473.

    CAS  Google Scholar 

  • Sun, Q., Cai, X., Li, J., Zheng, M., Chen, Z., & Yu, C.-P. (2014). Green synthesis of silver nanoparticles using tea leaf extract and evaluation of their stability and antibacterial activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 444, 226–231.

    CAS  Google Scholar 

  • Tang, X.-Z., Li, X., Cao, Z., Yang, J., Wang, H., Pu, X., et al. (2013). Synthesis of graphene decorated with silver nanoparticles by simultaneous reduction of graphene oxide and silver ions with glucose. Carbon, 59, 93–99.

    CAS  Google Scholar 

  • Van Tran, T., Nguyen, D. T. C., Le, H. T., Duong, C. D., Bach, L. G., Nguyen, H.-T. T., et al. (2019). Facile synthesis of manganese oxide-embedded mesoporous carbons and their adsorbability towards methylene blue. Chemosphere, 227, 455–461.

    Google Scholar 

  • Vi, T. T. T., Rajesh Kumar, S., Rout, B., Liu, C.-H., Wong, C.-B., Chang, C.-W., et al. (2018). The preparation of graphene oxide-silver nanocomposites: The effect of silver loads on gram-positive and gram-negative antibacterial activities. Nanomaterials, 8(3), 163.

    Google Scholar 

  • Vidhu, V., & Philip, D. (2014). Catalytic degradation of organic dyes using biosynthesized silver nanoparticles. Micron, 56, 54–62.

    CAS  Google Scholar 

  • Wang, P., Cao, M., Wang, C., Ao, Y., Hou, J., & Qian, J. (2014). Kinetics and thermodynamics of adsorption of methylene blue by a magnetic graphene-carbon nanotube composite. Applied Surface Science, 290, 116–124.

    CAS  Google Scholar 

  • Xiong, Z., Zhang, L. L., Ma, J., & Zhao, X. (2010). Photocatalytic degradation of dyes over graphene–gold nanocomposites under visible light irradiation. Chemical Communications, 46(33), 6099–6101.

    CAS  Google Scholar 

  • Yang, X., Li, Y., Du, Q., Wang, X., Hu, S., Chen, L., et al. (2016). Adsorption of methylene blue from aqueous solutions by polyvinyl alcohol/graphene oxide composites. Journal of Nanoscience and Nanotechnology, 16(2), 1775–1782.

    CAS  Google Scholar 

  • Zhang, S., Wang, H., Liu, J., & Bao, C. (2020). Measuring the specific surface area of monolayer graphene oxide in water. Materials Letters, 261, 127098.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the central lab of Tanta University for measuring XRD for the synthesized samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eman F. Aboelfetoh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aboelfetoh, E.F., Gemeay, A.H. & El-Sharkawy, R.G. Effective disposal of methylene blue using green immobilized silver nanoparticles on graphene oxide and reduced graphene oxide sheets through one-pot synthesis. Environ Monit Assess 192, 355 (2020). https://doi.org/10.1007/s10661-020-08278-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08278-2

Keywords

Navigation