Skip to main content

Advertisement

Log in

Extreme rainfall trends of 21 typical urban areas in China during 1998–2015 based on remotely sensed data sets

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

With the increase of population, many cities are growing in size at a phenomenal rate. Urbanization changes the urban underlying surface, influences the micro-climate, and sometimes affects the local precipitation process. In this study, we investigated the trends of extreme rainfall in China’s 21 typical urban areas. Based on a series of daily rainfall and “Urban/built-up” dataset from TMPA 3B42 and MCD12Q1 products in China, trends in extreme precipitation, with the threshold defined as 95th (pre95p) and 99th (pre99p) percentiles of annual rain days during 1998–2015, have been assessed in China, and especially in 21 typical urban areas from 1998 to 2015. The tendency curves in extreme rainfall of different years are presented. In this period, more than 66% regions of China covered by TMPA 3B42 have increasing trends in extreme rainfall with pre95p threshold. The 21 typical urban areas showed different trends—in over half of these areas, upward tendencies in extreme rainfall were observed, particularly in Dalian, Beijing, and Chongqing. Seventeen urban areas showed increasing tendencies in pre95p extreme rainfall days, including Shanghai, Nanjing, Hangzhou, and Suzhou in the Yangtze River Delta region. The results also illustrate that southeastern coastal urban areas of China may have experienced decreasing occurrences in extreme rainfall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. http://trmm.gsfc.nasa.gov

  2. https://mirador.gsfc.nasa.gov/collections/TRMM_3B42_daily__007.shtml

  3. https://modis.gsfc.nasa.gov/

  4. https://climatedataguide.ucar.edu/climate-data/ceres-igbp-land-classification

  5. https://www.ncdc.noaa.gov

  6. http://data.cma.cn/en

References

  • Aalst, M. K. V. (2006). The impacts of climate change on the risk of natural disasters. Disasters, 30(1), 5–18.

    Google Scholar 

  • Ackerman, A., Kirkpatrick, M., Stevens, D., & Toon, O. (2004). The impact of humidity above stratiform clouds on indirect aerosol climate forcing. Nature, 432(7020), 1014–1017.

    CAS  Google Scholar 

  • Agarwal, M., & Tandon, A. (2010). Modeling of the urban heat island in the form of mesoscale wind and of its effect on air pollution dispersal. Applied Mathematical Modelling, 34(9), 2520–2530.

    Google Scholar 

  • Alexander, L. V., Zhang, X., Peterson, T. C., Caesar, J., Gleason, B., Klein Tank, A. M. G., Haylock, M., Collins, D., Trewin, B., Rahimzadeh, F., Tagipour, A., Rupa Kumar, K., Revadekar, J., Griffths, G., Vincent, L., Stephenson, D. B., Burn, J., Aguilar, E., Taylor, M., New, M., Zhai, P., Rusticucci, M., & Vazque-Aguirre, J. L. (2012). Global observed changes in daily climate extremes of temperature and precipitation. Journal of Geophysical Research-Atmospheres, 111(D5), 1042–1063.

    Google Scholar 

  • Allan, R. P., & Soden, B. J. (2008). Atmospheric warming and the amplification of precipitation extremes. Science, 321(5895), 1481–1484.

    CAS  Google Scholar 

  • Barredo, J. I. (2007). Major flood disasters in Europe: 1950–2005. Natural Hazards, 42(1), 125–148.

    Google Scholar 

  • Cetin, M. (2015a). Determining the bioclimatic comfort in Kastamonu city. Environmental Monitoring and Assessment, 187(10), 640.

    Google Scholar 

  • Cetin, M. (2015b). Using GIS analysis to assess urban green space in terms of accessibility: case study in Kutahya. International Journal of Sustainable Development and World Ecology, 22(5), 420–424.

    Google Scholar 

  • Cetin, M. (2016). Sustainability of urban coastal area management: a case study on Cide. Journal of Sustainable Forestry, 35(7), 527–541.

    Google Scholar 

  • Cetin, M., & Sevik, H. (2016). Evaluating the recreation potential of Ilgaz Mountain National Park in Turkey. Environmental Monitoring and Assessment, 188(1), 52.

    Google Scholar 

  • Cetin, M., Adiguzel, F., Kaya, O., & Sahap, A. (2018). Mapping of bioclimatic comfort for potential planning using GIS in Aydin. Environment, Development and Sustainability, 20(1), 361–375.

    Google Scholar 

  • Chen, S., Hong, Y., Cao, Q., Kirstetter, P., Gourley, J. J., Qi, Y., Zhang, J., Howard, K., Hu, J., & Wang, J. (2013). Performance evaluation of radar and satellite rainfalls for Typhoon Morakot over Taiwan: are remote-sensing products ready for gauge denial scenario of extreme events? Journal of Hydrology, 506, 4–13.

    Google Scholar 

  • Chen, Z., Yin, L., Chen, X., Wei, S., & Zhu, Z. (2016). Research on the characteristics of urban rainstorm pattern in the humid area of Southern China: a case study of Guangzhou city. International Journal of Climatology, 35(14), 4370–4386.

    Google Scholar 

  • Chou, C., Chen, C. A., Tan, P. H., & Chen, K. T. (2012). Mechanisms for global warming impacts on precipitation frequency and intensity. Journal of Climate, 25(9), 3291–3306.

    Google Scholar 

  • Deng, Y., Jiang, W., He, B., Chen, Z., & Jia, K. (2018). Change in Intensity and frequency of extreme precipitation and its possible teleconnection with large-scale climate index over the China from 1960 to 2015. Journal of Geophysical Research-Atmospheres, 123(4), 2068–2081.

    Google Scholar 

  • Domrös, M., & Peng, G. (2012). The climate of China. Berlin: Springer.

    Google Scholar 

  • Donat, M. G., Lowry, A. L., Alexander, L. V., O’Gorman, P. A., & Maher, N. (2016). More extreme precipitation in the world’s dry and wet regions. Nature Climate Change, 6(5), 508–514.

    Google Scholar 

  • Frich, P., Alexander, L. V., Della-Marta, P. M., Gleason, B., Haylock, M., Klein Tank, A. M. G., & Peterson, T. (2002). Observed coherent changes in climatic extremes during the second half of the twentieth century. Climate Research, 19(3), 193–212.

    Google Scholar 

  • Georgescu, M., Morefield, P. E., Bierwagen, B. G., & Weaver, C. P. (2014). Urban adaptation can roll back warming of emerging megapolitan regions. Proceedings of the National Academy of Sciences, 111(8), 2909–2914.

    CAS  Google Scholar 

  • Han, J. Y., Baik, J. J., & Lee, H. (2014). Urban impacts on precipitation. Asia-Pacific Journal of Atmospheric Sciences, 50(1), 17–30.

    Google Scholar 

  • Hu, C., Xu, Y., Han, L., Yang, L., & Xu, G. (2016). Long-term trends in daily precipitation over the Yangtze River delta region during 1960–2012, Eastern China. Theoretical and Applied Climatology, 125(1–2), 131–147.

    Google Scholar 

  • Huang, D., Zhang, T., & Zhou, F. (2010). Sea-surface temperature fronts in the Yellow and East China Seas from TRMM microwave imager data. Deep Sea Research Part II: Topical Studies in Oceanography, 57(11), 1017–1024.

    Google Scholar 

  • Huang, Y., Chen, S., Cao, Q., Hong, Y., Wu, B., Huang, M., Qiao, L., Zhang, Z., Li, Z., Li, W., & Yang, X. (2013). Evaluation of version-7 TRMM multi-satellite precipitation analysis product during the Beijing extreme heavy rainfall event of 21 July 2012. Water, 6(1), 32–44.

    Google Scholar 

  • Huffman, G. J., Bolvin, D. T., Nelkin, E. J., Wolff, D. B., Alder, R. F., Gu, G., Hong, Y., Bowman, K. P., & Stocker, E. F. (2007). The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. Journal of Hydrometeorology, 8, 38–55.

    Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change). (2013). Summary for policymakers. In Climate change 2013: the physical science basis. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Contribution of Working Group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.

    Google Scholar 

  • Jia, S., Zhu, W., Lű, A., & Yan, T. (2011). A statistical spatial downscaling algorithm of TRMM precipitation based on NDVI and DEM in the Qaidam Basin of China. Remote Sensing of Environment, 115(12), 3069–3079.

    Google Scholar 

  • Joyce, R. J., Janowiak, J. E., Arkin, P. A., & Xie, P. (2004). CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. Journal of Hydrometeorology, 5, 487–503.

    Google Scholar 

  • Kaya, L. G., Kaynakci-Elinc, Z., Yucedag, C., & Cetin, M. (2018). Environmental outdoor plant preferences: a practical approach for choosing outdoor plants in urban or suburban residential areas in Antalya, Turkey. Fresenius Environmental Bulletin, 27(12), 7945–7952.

    CAS  Google Scholar 

  • Kidd, C., & Huffman, G. (2011). Global precipitation measurement. Meteorological Applications, 18(3), 334–353.

    Google Scholar 

  • Li, D., Chistakos, G., Ding, X., & Wu, J. (2017a). Adequacy of TRMM satellite rainfall data in driving the SWAT modeling of Tiaoxi catchment (Taihu lake basin, China). Journal of Hydrology, 556, 1139–1152.

    Google Scholar 

  • Li, W., Liu, C., Scaioni, M., Sun, W., Chen, Y., Yao, D., Chen, S., Hong, Y., Zhang, K., & Cheng, G. (2017b). Spatio-temporal analysis and simulation on shallow rainfall-induced landslides in China using landslide susceptibility dynamics and rainfall ID thresholds. Science China Earth Sciences, 60(4), 720–732.

    Google Scholar 

  • Liang, P., & Ding, Y. (2017). The long-term variation of extreme heavy precipitation and its link to urbanization effects in Shanghai during 1916–2014. Advances in Atmospheric Sciences, 34(3), 321–334.

  • Liang, P., Ding, Y. H., He, J. H., & Tang, X. (2013). Study of relationship between urbanization speed and change in spatial distribution of rainfall over Shanghai. Journal of Tropical Meteorology, 19, 97–103.

    Google Scholar 

  • Libertino, A., Sharma, A., Lakshmi, V., & Claps, P. (2016). A global assessment of the timing of extreme rainfall from TRMM and GPM for improving hydrologic design. Environmental Research Letters, 2016, 11(5).

    Google Scholar 

  • Lu, M., Xu, Y., Shan, N., Wang, Q. (2019). Effect of urbanisation on extreme precipitation based on nonstationary models in the Yangtze River Delta metropolitan region. Science of The Total Environment, 673, 64–73.

    CAS  Google Scholar 

  • Meehl, G. A., Arblaster, J. M., & Tebaldi, C. (2005). Understanding future patterns of increased precipitation intensity in climate model simulations. Geophysical Research Letters, 32(18), 109–127.

    Google Scholar 

  • O’Gorman, P. A. (2015). Precipitation extremes under climate change. Current Climate Change Reports, 1(2), 49–59.

    Google Scholar 

  • Olson, W. S., Kummerow, C. D., Heymsfield, G. M., & Giglio, L. (1996). A method for combined passive–active microwave retrievals of cloud and precipitation profiles. Journal of Applied Meteorology, 35(10), 1763–1789.

    Google Scholar 

  • Pendergrass, A. G., & Knutti, R. (2018). The uneven nature of daily precipitation and its change. Geophysical Research Letters, 45(21), 11,980–11,988.

    Google Scholar 

  • Pfeifer, M., Disney, M., Quaife, T., & Marchant, R. (2011). Terrestrial ecosystems from space: a review of earth observation products for macroecology applications. Global Ecology and Biogeography, 21(6), 603–624.

    Google Scholar 

  • Qian, W. H., & Lin, X. (2005). Regional trends in recent precipitation indices in China. Meteorology and Atmospheric Physics, 90(3–4), 193–207.

    Google Scholar 

  • Quan, R. (2014). Risk assessment of flood disaster in Shanghai based on spatial–temporal characteristics analysis from 251 to 2000. Environmental Earth Sciences, 72(11), 4627–4638.

    Google Scholar 

  • Rajasekar, U., & Weng, Q. (2009). Urban heat island monitoring and analysis using a non-parametric model: a case study of Indianapolis. ISPRS Journal of Photogrammetry and Remote Sensing, 64(1), 86–96.

    Google Scholar 

  • Schneider, U., Becker, A., Finger, P., Meyer-Christoffer, A., Ziese, M., & Rudolf, B. (2014). GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theoretical and Applied Climatology, 115(1–2), 15–40.

    Google Scholar 

  • Shen, Y., Xiong, A., Wang, Y., & Xie, P. (2010). Performance of high–resolution satellite precipitation products over china. Journal of Geophysical Research-Atmospheres, 115(D2), 355–365.

    Google Scholar 

  • Song, X., Zhang, J., AghaKouchak, A., Roy, S. S., Xuan, Y., Wang, G., He, R., Wang, X., & Liu, C. (2014). Rapid urbanization and changes in spatiotemporal characteristics of precipitation in Beijing metropolitan area. Journal of Geophysical Research-Atmospheres, 119(19), 11,250–11,271.

    Google Scholar 

  • Sorooshian, S., Hsu, K. L., Gao, X., Gupta, H. V., Imam, B., & Dan, B. (2000). Evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bulletin of the American Meteorological Society, 81, 2035–2046.

    Google Scholar 

  • Tang, Q., Zhang, X., & Francis, J. A. (2014). Extreme summer weather in northern mid-latitudes linked to a vanishing cryosphere. Nature Climate Change, 4(1), 45–50.

    Google Scholar 

  • Tarnavsky, E., Mulligan, M., Ouessar, M., Faye, A., & Black, E. (2013). Dynamic hydrological modeling in drylands with TRMM based rainfall. Remote Sensing, 5(12), 6691–6716.

    Google Scholar 

  • Tebaldi, C. A., & Knutti, R. (2007). The use of the multi-model ensemble in probabilistic climate projections. Philosophical Transactions of the Royal Society A - Mathematical Physical and Engineering Sciences, 365(1857), 2053–2075.

    Google Scholar 

  • Wang, Y., & Yan, Z. W. (2009). Trends in seasonal precipitation over china during 1961–2007. Atmospheric & Oceanic Science Letters, 2(3), 165–171.

    Google Scholar 

  • Wang, K., Wang, L., Wei, Y. M., & Ye, M. (2013). Beijing storm of July 21, 2012: observations and reflections. Natural Hazards, 67(2), 969.

    Google Scholar 

  • Wu, Y., Wu, S. Y., Wen, J., Xu, M., & Tan, J. (2015). Changing characteristics of precipitation in China during 1960–2012. International Journal of Climatology, 36(3), 1387–1402.

    Google Scholar 

  • Xu, W., Zipser, E. J., & Liu, C. (2009). Rainfall characteristics and convective properties of mei-yu precipitation systems over South China, Taiwan, and the South China Sea. Part I: TRMM observations. Monthly Weather Review, 137(12), 4261–4275.

    Google Scholar 

  • Yang, X. (2013). China’s rapid urbanization. Science, 342(6156), 310–310.

    CAS  Google Scholar 

  • Yang, L., Scheffran, J., Qin, H., & You, Q. (2015). Climate-related flood risks and urban responses in the Pearl River Delta, China. Regional Environmental Change, 15(2), 379–391.

    Google Scholar 

  • Yucedag, C., Kaya, L. G., & Cetin, M. (2018). Identifying and assessing environmental awareness of hotel and restaurant employees’ attitudes in the Amasra District of Bartin. Environmental Monitoring and Assessment, 190(2), 60.

    Google Scholar 

  • Zeng, J., Chen, K. S., Bi, H., & Chen, Q. (2016). A preliminary evaluation of the SMAP radiometer soil moisture product over United States and Europe using ground-based measurements. IEEE Transactions on Geoscience and Remote Sensing, 54(8), 4929–4940.

    Google Scholar 

  • Zhai, P., Sun, A., Ren, F., Liu, X., Gao, B., & Zhang, Q. (1999). Changes of climate extremes in China. Climate Change, 42(1), 203–218.

    Google Scholar 

  • Zhai, P., Zhang, X., Wan, H., & Pan, X. (2005). Trends in total precipitation and frequency of daily precipitation extremes over china. Journal of Climate, 18(7), 1096–1108.

    Google Scholar 

  • Zhang, G., Biradar, C. M., Xiao, X., Dong, J., Zhou, Y., Qin, Y., Zhang, Y., Liu, F., Ding, M., & Thomas, R. (2018). Exacerbated grassland degradation and desertification in Central Asia during 2000–2014. Ecological Applications, 28(2), 442–456.

    Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant Nos. 41501458 and 41730642), the Natural Science Foundation of Shanghai (Grant No. 19ZR1437500), the National Key Research and Development Program of China (No. 2016YFC0502706), open fund of Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection (STKF201902), and the Shanghai Gaofeng & Gaoyuan Project for University Academic Program Development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Zhao.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Zhao, M., Scaioni, M. et al. Extreme rainfall trends of 21 typical urban areas in China during 1998–2015 based on remotely sensed data sets. Environ Monit Assess 191, 709 (2019). https://doi.org/10.1007/s10661-019-7900-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7900-7

Keywords

Navigation