Skip to main content
Log in

Comparing invasiveness of native and non-native species under changing climate in North-East India: ecological niche modelling with plant types differing in biogeographic origin

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

We assess the invasive potential of Ageratum conyzoides, Hevea brasiliensis, Urena lobata and Imperata cylindrica differing in habit and biogeographic origin through ecological niche modelling in the context of the 2000 and 2050 climates of North-East (NE) India. Out of these four species, Ageratum conyzoides, Urena lobata and Imperata cylindrica are naturally occurring weed species and Hevea brasiliensis is a cultivated tree species. This study tries to address a basic question whether species with similarity in biogeographic origin may have some uniform strategy to succeed in invasion process. Ecological niche models predicted that Ageratum conyzoides (a shrub) and Hevea brasiliensis (a tree) of South American origin have greater potential to invade/distribute in NE region of India by 2050 than two other species, Urena lobata and Imperata cylindrica, of South-Asian origin. The latter two species show lower potential to invade in NE India in 2050 compared with their extent of distribution in 2000. A set of major contributing bioclimatic factors responsible for distribution of two South-Asian species (Urena and Imperata sp.) remain more or less constant between 2000 and 2050 climates. However, the distribution of Ageratum sp. and Hevea sp. with respect to two climate scenarios is attributed by two different sets of major bioclimatic factors. This indicates the robustness of the species to get adapted to different set of climatic variables over time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bellard, C., Leclerc, C., Leroy, B., Bakkenes, M., Veloz, S., Thuiller, W., & Courchamp, F. (2014). Vulnerability of biodiversity hotspots to global change. Global Ecology and Biogeography, 23, 1376–1386.

    Article  Google Scholar 

  • Carroll, S. P., Hendry, A. P., Reznick, D. N., & Fox, C. W. (2007). Evolution on ecological time-scales. Functional Ecology, 21, 387–393.

    Article  Google Scholar 

  • Chai, S. L., Nixon, A., Zhang, J., & Nielsen, S. (2014). Predicting invasive species response to climate change: prioritization and mapping of new potential threats to Alberta’s Biodiversity. In Prepared for the biodiversity management and climate change adaptation project/Alberta Biodiversity (p. 60). Edmonton AB: Monitoring Institute.

    Google Scholar 

  • Chakraborty, R., et al. (2012). North-East India an ethnic storehouse of unexplored medicinal plants. Journal of Natural Product and Plant Resource, 2(1), 143–152.

    Google Scholar 

  • Fortini, L., & Schubert, O. (2017). Beyond exposure, sensitivity and adaptive capacity: a response based ecological framework to assess species climate change vulnerability. Climate Change Responses, 4. https://doi.org/10.1186/s40665-017-0030-y.

  • GISD, Global Invasive Species Database online data sheet. (2006). Ageratum conyzoides (herb). www.issg.org/database. Accessed July, 2017

  • Guisan, A., & Zimmermann, N. E. (2000). Predictive habitat distribution models in ecology. Ecological Modelling. https://doi.org/10.1016/S0304-3800(00)00354-9.

    Article  Google Scholar 

  • Hatfield, J. L., Boote, K. J., Kimball, B. A., Ziska, L. H., Izaurralde, R. C., Ort, D., Thomson, A. M., & Wolfe, D. W. (2011). Climate impacts on agriculture: implications for crop production. Journal of Agronomy, 103, 351–370.

    Article  Google Scholar 

  • Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965–1978.

    Article  Google Scholar 

  • Holm, L. G., Plucknett, D. L., Pancho, J. V., & Herberger, J. P. (1977). The world’s worst weeds. Distribution and biology: Honolulu, Hawaii, USA, University Press of Hawaii.

    Google Scholar 

  • Hu, X.-G., Jin, Y., Wang, X.-R., Mao, J.-F., & Li, Y. (2015). Predicting impacts of future climate change on the distribution of the widespread conifer Platycladus orientalis. PLoS ONE, 10(7), e0132326. https://doi.org/10.1371/journal.pone.0132326.

    Article  CAS  Google Scholar 

  • Jacob, J., Annamalainathan, K., Badre, A., Sathik, T. M., Thapliyal, A. P., & Devakumar, A. (1999). Physiological constrains for cultivation of Hevea brasiliensis in certain unfavorable agroclimatic regions of India. Indian Journal of Natural Rubber Research, 12, 1–16.

    Google Scholar 

  • Kearney, M., Simpson, S. J., Raubenheimer, D., & Helmuth, B. (2010). Modelling the ecological niche from functional traits. Philosophical Transactions of the Royal Society B: Biological Sciences., 365, 3469–3483. https://doi.org/10.1098/rstb.2010.0034.

    Article  Google Scholar 

  • Kohli, R. K., Batish, D. R., Singh, H. P., Dogra, K. S. (2006). Status, invasiveness and environmental threats of three tropical American invasive weeds (Parthenium hysterophorus L., Ageratum conyzoides L., Lantana camara L.) in India. Biological Invasions, http://www.springerlink.com/content/81ju7v98t470771 /fulltext.pdf

  • Lawler, J. J., Shafer, S. L., White, D., Kareiva, P., Maurer, E. P., & Blaustein, A. R. (2009). Projected climate-induced faunal change in the Western Hemisphere. Ecology., 90(3), 588–597.

    Article  Google Scholar 

  • Leger, E. A., & Espeland, E. K. (2010). Coevolution between native and invasive plant competitors: implications for invasive species management. Evolutionary Applications., 3, 169–178. https://doi.org/10.1111/j.1752-4571.2009.00105.x.

    Article  Google Scholar 

  • Liu, S. J., Zhou, G. S., Fang, S. B., & Zhang, J. H. (2015). Effects of future climate change on climatic suitability of rubber plantation in China. Ying Yong Sheng Tai Xue Bao, 26(7), 2083–2090.

    Google Scholar 

  • Ortega-Huerta, M. A., & Peterson, A. T. (2008). Modeling ecological niches and predicting geographic distributions: a test of six presence-only methods. Revista Mexicana de Biodiversidad, 79, 205–221.

    Google Scholar 

  • Peterson, A. T. (2006). Uses and requirements of ecological niche models and related distributional models. Biodiversity Informatics, 3, 59–72.

    Article  Google Scholar 

  • Peterson, A. T., & Nakazawa, Y. (2008). Environmental data sets matter in ecological niche modelling: an example with Solenopsis invicta and Solenopsis richteri. Global Ecology and Biogeography, 17, 135–144.

    Google Scholar 

  • Peterson, A. T., & Vieglais, D. A. (2001). Predicting species invasions using ecological niche modelling. BioScience, 51, 363–371.

    Article  Google Scholar 

  • Phillips, S. J., & Dudik, M. (2008). Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography, 31, 161–175.

    Article  Google Scholar 

  • Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modelling of species geographic distributions. Ecological Modelling, 190, 231–259.

    Article  Google Scholar 

  • Podlesny, J., & Podlesna, A. (2011). Effect of rainfall amount and distribution on growth, development and yields of determinate and indeterminate cultivars of blue Lupin. Polish Journal of Agronomy, 4, 16–22.

    Google Scholar 

  • Purseglove, J. W. (1968). Tropical crops. Longman Group Ltd, UK: Dicotyledons.

    Google Scholar 

  • Ray, D., Behera, M. D., & Jacob, J. (2016). Predicting rubber tree distribution through ecological niche modelling with climate, soil and socioeconomic drivers. Ecological Research, 31(1), 75–91.

    Article  Google Scholar 

  • Roger, V. L., Boerwinkle, E., & Crapo, J. D. (2015). Respond to “future of population studies”. American Journal of Epidemiology, 15, 181(6), 372–373.

    Article  Google Scholar 

  • Roy, P. S., Karnatak, H., Kushwaha, S. P. S., Roy, A., & Saran, S. (2012). India’s plant diversity database at landscape level on geospatial platform: prospects and utility in today’s changing climate. Current Science, 102(8), 1136–1142.

    Google Scholar 

  • Slater, H., & Michael, E. (2012). Predicting the current and future potential distributions of lymphatic filariasis in Africa using maximum entropy ecological niche modelling. PLoS ONE, 7, e32202. https://doi.org/10.1371/journal.pone.003220.

    Article  CAS  Google Scholar 

  • Strauss, S. Y., Lau, J. A., & Carroll, S. P. (2006). Evolutionary responses of natives to introduced species: what do introductions tell us about natural communities? Ecology Letters, 9, 354–371.

    Article  Google Scholar 

  • Vorsino, A. E., King, C. B., Haines, W. P., & Rubinoff, D. (2013). Modeling the habitat retreat of the rediscovered endemic Hawaiian moth Omiodes continuatalis Wallengren (Lepidoptera: Crambidae). PLoS ONE. https://doi.org/10.1371/journal.pone.0051885.

    Article  CAS  Google Scholar 

  • Walther, G. (2010). Community and ecosystem responses to recent climate change. Philos Trans R Soc Biol Sci., 365(1549), 2019–2024.

    Article  Google Scholar 

  • Wiens, J. J. (2011). The niche, biogeography and species interactions. Philosophical Transactions of the Royal Society B: Biological Sciences, 366(1576), 2336–2350.

    Article  Google Scholar 

  • Yan, H., Liang, C., Li, Z., Liu, Z., Miao, B., He, C., et al. (2015). Impact of precipitation patterns on biomass and species richness of annuals in a dry steppe. PLoS ONE. https://doi.org/10.1371/journal.pone.0125300.

    Article  Google Scholar 

Download references

Acknowledgements

The location information on the four species used in the study was received from the Indian national level project on ‘Biodiversity Characterisation at Landscape Level’ which is thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debabrata Ray.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Terrestrial and Ocean Dynamics: India Perspective

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ray, D., Behera, M.D. & Jacob, J. Comparing invasiveness of native and non-native species under changing climate in North-East India: ecological niche modelling with plant types differing in biogeographic origin. Environ Monit Assess 191 (Suppl 3), 793 (2019). https://doi.org/10.1007/s10661-019-7685-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7685-8

Keywords

Navigation