Skip to main content
Log in

Magnetic cobalt particle–assisted solid phase extraction of tellurium prior to its determination by slotted quartz tube-flame atomic absorption spectrophotometry

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The emergence of magnetic materials has opened up doors to numerous applications including their use as sorbents for preconcentration of trace elements. Magnetic materials exhibit many unique advantages in sample preparation such as easy separation from the sample, high preconcentration factor, and short operation period. In the present study, magnetic cobalt material was synthesized, characterized, and used as an effective sorbent in a solid phase extraction process. Experimental variables of the extraction process including pH and volume of buffer solution, eluent concentration and volume, mixing type and period, and sorbent amount were optimized to achieve maximum extraction efficiency. Instrumental variables of flame atomic absorption spectrophotometry and the type of slotted quartz tube were also investigated. Under the optimum conditions, the combined method provided a wide linear range between 50 and 200 ng/mL with detection and quantification limits of 15.4 ng/mL and 51.3 ng/mL, respectively. Relative standard deviations of the proposed method were less than 5.0% and a high enrichment factor of 86.7 was obtained. The proposed method was successfully applied to soil samples for the determination of trace tellurium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Afkhami, A., & Norooz-Asl, R. (2009). Removal, preconcentration and determination of Mo (VI) from water and wastewater samples using maghemite nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 346, 52–57. https://doi.org/10.1016/j.colsurfa.2009.05.024.

    Article  CAS  Google Scholar 

  • Amjadi, M., Manzoori, J. L., & Abulhassani, J. (2011). Ultrasound-assisted ionic liquid-based microextraction for preconcentration of arsenic prior to its determination by electrothermal atomic absorption spectrometry. Current Analytical Chemistry, 7, 262–268. https://doi.org/10.2174/1573411011107030262.

    Article  CAS  Google Scholar 

  • Ansari, S., Bhor, R., Pai, K., Sen, D., Mazumder, S., Ghosh, K., Kolekar, Y., & Ramana, C. (2017). Cobalt nanoparticles for biomedical applications: Facile synthesis, physiochemical characterization, cytotoxicity behavior and biocompatibility. Applied Surface Science, 414, 171–187. https://doi.org/10.1016/j.apsusc.2017.03.002.

    Article  CAS  Google Scholar 

  • Ashino, T., & Takada, K. (1995). Determination of trace amounts of selenium and tellurium in nickel-based heat-resisting superalloys, steels and several metals by electrothermal atomic absorption spectrometry after reductive coprecipitation with palladium using ascorbic acid. Analytica Chimica Acta, 312, 157–163. https://doi.org/10.1016/0003-2670(95)00215-L.

    Article  CAS  Google Scholar 

  • Ba, L. A., Döring, M., Jamier, V., & Jacob, C. (2010). Tellurium: an element with great biological potency and potential. Organic & Biomolecular Chemistry, 8, 4203–4216. https://doi.org/10.1039/c0Ob00086h.

    Article  CAS  Google Scholar 

  • Cerwenka, E. A., Jr., & Cooper, W. C. (1961). Toxicology of selenium and tellurium and their compounds. Archives of Environmental Health: An International Journal, 3, 189–200. https://doi.org/10.1080/00039896.1961.10663003.

    Article  CAS  Google Scholar 

  • Cullity, B. D. (1978). Elements of X-ray diffraction. https://doi.org/10.1021/ed034pA178.

  • El-Shahawi, M., Al-Saidi, H., Al-Harbi, E., Bashammakh, A., & Alsibbai, A. (2013). Speciation and determination of tellurium in water, soil, sediment and other environmental samples. In S. Bakirdere (Ed.), Speciation Studies in Soil, Sediment and Environmental Samples (pp. 527–544). https://doi.org/10.1201/b15501-15.

  • Ghasemi, E., Najafi, N. M., Raofie, F., & Ghassempour, A. (2010). Simultaneous speciation and preconcentration of ultra traces of inorganic tellurium and selenium in environmental samples by hollow fiber liquid phase microextraction prior to electrothermal atomic absorption spectroscopy determination. Journal of Hazardous Materials, 181, 491–496. https://doi.org/10.1016/j.jhazmat.2010.05.040.

    Article  CAS  Google Scholar 

  • Giakisikli, G., & Anthemidis, A. N. (2013). Magnetic materials as sorbents for metal/metalloid preconcentration and/or separation. A review. Analytica Chimica Acta, 789, 1–16. https://doi.org/10.1016/j.aca.2013.04.021.

    Article  CAS  Google Scholar 

  • Grotti, M., Lagomarsino, C., & Frache, R. (2005). Multivariate study in chemical vapor generation for simultaneous determination of arsenic, antimony, bismuth, germanium, tin, selenium, tellurium and mercury by inductively coupled plasma optical emission spectrometry. Journal of Analytical Atomic Spectrometry, 20, 1365–1373. https://doi.org/10.1039/B510803A.

    Article  CAS  Google Scholar 

  • Guo, F., Zheng, H., Yang, Z., & Qian, Y. (2002). Synthesis of cobalt nanoparticles in ethanol hydrazine alkaline system (EHAS) at room temperature. Materials Letters, 56, 906–909. https://doi.org/10.1016/S0167-577X(02)00635-3.

    Article  CAS  Google Scholar 

  • Harada, T., & Takahashi, Y. (2008). Origin of the difference in the distribution behavior of tellurium and selenium in a soil–water system. Geochimica et Cosmochimica Acta, 72, 1281–1294. https://doi.org/10.1016/j.gca.2007.12.008.

    Article  CAS  Google Scholar 

  • Hritcu, D., Dodi, G., & Popa, M. I. (2012). Heavy metal ions adsorption on chitosan-magnetite microspheres. International Review of Chemical Engineering, 4, 364–368 Special Section on Open Door Initiative (ODI)-2nd edition.

    Google Scholar 

  • Huang, C., & Hu, B. (2008). Speciation of inorganic tellurium from seawater by ICP-MS following magnetic SPE separation and preconcentration. Journal of Separation Science, 31, 760–767. https://doi.org/10.1002/jssc.200700405.

    Article  CAS  Google Scholar 

  • Kaplan, M., Cerutti, S., Moyano, S., Olsina, R., Martinez, L., & Gásquez, J. (2004). On-line preconcentration system by coprecipitation with lanthanum hydroxide using packed-bed filter for the determination of tellurium in water by ICP-OES with USN. Instrumentation Science & Technology, 32, 423–431. https://doi.org/10.1081/ci-120037674.

    Article  CAS  Google Scholar 

  • Körez, A., Eroğlu, A. E., Volkan, M., & Ataman, O. Y. (2000). Speciation and preconcentration of inorganic tellurium from waters using a mercaptosilica microcolumn and determination by hydride generation atomic absorption spectrometry. Journal of Analytical Atomic Spectrometry, 15, 1599–1605. https://doi.org/10.1039/b004696p.

    Article  Google Scholar 

  • Leiber, M. A. (2005). Use of tellurium in carbon-supported, noble metal-containing catalysts for liquid phase oxidation reactions. Google Patents. WO/2004/002622.

  • Lin, Z. H., Yang, Z., & Chang, H. T. (2007). Preparation of fluorescent tellurium nanowires at room temperature. Crystal Growth and Design, 8, 351–357. https://doi.org/10.1021/cg070357f.

    Article  CAS  Google Scholar 

  • Lu, Q., Gao, F., & Komarneni, S. (2005). A green chemical approach to the synthesis of tellurium nanowires. Langmuir, 21, 6002–6005. https://doi.org/10.1021/la050594p.

    Article  CAS  Google Scholar 

  • Ma, Y., Hao, Q., Poudel, B., Lan, Y., Yu, B., Wang, D., Chen, G., & Ren, Z. (2008). Enhanced thermoelectric figure-of-merit in p-type nanostructured bismuth antimony tellurium alloys made from elemental chunks. Nano Letters, 8, 2580–2584. https://doi.org/10.1021/nl8009928.

    Article  CAS  Google Scholar 

  • Nyaba, L., Biata, N. R., Ngila, J. C., & Nomngongo, P. N. (2017). Ultrasound assisted-ionic liquid-dispersive liquid-liquid microextraction for preconcentration of inorganic tellurium in environmental water samples prior to inductively coupled plasma–optical emission spectrometry detection. Journal of Molecular Liquids, 231, 154–159. https://doi.org/10.1016/j.molliq.2017.02.012.

    Article  CAS  Google Scholar 

  • Pedro, J., Stripekis, J., Bonivardi, A., & Tudino, M. (2008). Determination of tellurium at ultra-trace levels in drinking water by on-line solid phase extraction coupled to graphite furnace atomic absorption spectrometer. Spectrochimica Acta Part B: Atomic Spectroscopy, 63, 86–91. https://doi.org/10.1016/j.sab.2007.11.011.

    Article  CAS  Google Scholar 

  • Šafařı́ková, M., & Šafařı́k, I. (1999). Magnetic solid-phase extraction. Journal of Magnetism and Magnetic Materials, 194, 108–112. https://doi.org/10.1016/S0304-8853(98)00566-6.

    Article  Google Scholar 

  • Schramel, P., Wendler, I., & Angerer, J. (1997). The determination of metals (antimony, bismuth, lead, cadmium, mercury, palladium, platinum, tellurium, thallium, tin and tungsten) in urine samples by inductively coupled plasma-mass spectrometry. International Archives of Occupational and Environmental Health, 69, 219–223.

    Article  CAS  Google Scholar 

  • Takenaga, M., Yamada, N., Ohara, S., Nishiuchi, K., Nagashima, M., Kashihara, T., Nakamura, S., & Yamashita, T. (1983). New optical erasable medium using tellurium suboxide thin film (pp. 173–178). Bellingham: Optical Storage Media. International Society for Optics and Photonics. https://doi.org/10.1117/12.936065.

    Book  Google Scholar 

  • Urbánková, K., Moos, M., Machát, J., & Sommer, L. (2011). Simultaneous determination of inorganic arsenic, antimony, selenium and tellurium by ICP-MS in environmental waters using SPE preconcentration on modified silica. International Journal of Environmental Analytical Chemistry, 91, 1077–1087. https://doi.org/10.1080/03067311003782666.

    Article  CAS  Google Scholar 

  • Xu, P., Li, J., Shi, L., Selke, M., Chen, B., & Wang, X. (2013). Synergetic effect of functional cadmium–tellurium quantum dots conjugated with gambogic acid for HepG2 cell-labeling and proliferation inhibition. International Journal of Nanomedicine, 8, 3729. https://doi.org/10.2147/IJN.S51622.

    Article  CAS  Google Scholar 

  • Yang, G., Zheng, J., Tagami, K., & Uchida, S. (2013). Rapid and sensitive determination of tellurium in soil and plant samples by sector-field inductively coupled plasma mass spectrometry. Talanta, 116, 181–187. https://doi.org/10.1016/j.talanta.2013.05.015.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nizamettin Özdoğan or Sezgin Bakırdere.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özdoğan, N., Kapukıran, F., Öztürk Er, E. et al. Magnetic cobalt particle–assisted solid phase extraction of tellurium prior to its determination by slotted quartz tube-flame atomic absorption spectrophotometry. Environ Monit Assess 191, 339 (2019). https://doi.org/10.1007/s10661-019-7490-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7490-4

Keywords

Navigation