Skip to main content
Log in

Radon concentrations in the community groundwater system of South Korea

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Groundwater samples were collected from 3818 wells used for the community groundwater system (CGS) in the remote rural areas of South Korea and analyzed to determine radon concentrations. Radon concentrations varied with rock type, ranging from 0.1 to 2393.5 Bq/L with an average of 86.6 Bq/L and a median of 46.4 Bq/L. Among 10 geological units, the median CGS radon concentration was highest (59.6–103.0 Bq/L) in granite, and lower in sedimentary rocks (16.9–21.1 Bq/L) and porous volcanic rocks (17.6 Bq/L), respectively. Of the 3818 samples, 26.1% exceeded the World Health Organization (WHO) radon level limit of 100 Bq/L. The application of the natural radon reduction rate (26.5%) recently suggested by Yun et al. Applied Radiation and Isotopes, 126(1), 23–25 (2017) to the CGS water tank appeared to decrease exceedance of the WHO radon level limit to 20.2%. Because of the high radon concentrations in CGS groundwater in South Korea, the establishment of a radon level limit for drinking water is strongly recommended to ensure the health and safety of the people using CGS water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdallah, S. M., Habib, R. R., Nuwayhid, R. Y., Chatila, M., & Katul, G. (2007). Radon measurements in well and spring water in Lebanon. Radiation Measurements, 42(2), 298–303.

    Article  CAS  Google Scholar 

  • Åkerblom, G. & Lindgren, J. (1996). Mapping of ground water radon potential. In Proceedings of IAEA Tech. Committee Meeting, “The advantages and pitfalls of using uranium exploration data and techniques as well as other methods for the preparation of radioelement and radon maps for baseline information in environmental studies and monitoring,” Vienna, May 1996.

  • Althoyaib, S. S., & El-Taher, A. (2015). Natural radioactivity measurements in groundwater from Al-Jawa, Saudi Arabia. Journal of Radioanalytical and Nuclear Chemistry, 304(2), 547–552.

    Article  CAS  Google Scholar 

  • Banks, D., Frengstad, B., Midtgard, A. K., Krog, J. R., & Strand, T. (1998). The chemistry of Norwegian groundwaters: The distribution of radon, major and minor elements in 1,604 crystalline bedrock groundwaters. The Science of the Total Environment, 222(1–2), 71–91.

    Article  CAS  Google Scholar 

  • Barcelona, M.J., Gibb, J.P., Helfrich, J.A. & Garske, E.E. (1985). Practical guide for groundwater sampling. Illinois State Water Survey Contract Report, 374.

  • Cho, B. W., Sung, I. H., Cho, S. Y., & Park, S. K. (2007). A preliminary investigation of radon concentrations in groundwater of South Korea (in Korean with English abstract). Journal of Soil and Groundwater Environment, 12(4), 98–104.

    Google Scholar 

  • Choi, B. S. (1999). Determination of aquifer characteristics from specific capacity data of wells in Cheju Island (in Korean with English abstract). Journal of Soil and Groundwater Environment, 16(4), 180–187.

    Google Scholar 

  • Cosma, C., Moldovan, M., Dicu, T., & Kovacs, T. (2008). Radon in water from Transylvania (Romania). Radiation Measurements, 43(8), 1423–1428.

    Article  CAS  Google Scholar 

  • Cothern, C. R., & Robers, P. A. (1990). Radon, radium and uranium in drinking water (Vol. 286). Boca Raton: Lewis publishers.

    Google Scholar 

  • EURATOM (European Atomic Energy Community) (2013). Council Directive 2013/51/EURATOM of 22 October 2013 Laying Down Requirements for the Protection of the Health of the General Public with Regard to Radioactive Substances in Water Intended for Human Consumption.

  • Godoy, J. M., & Godoy, M. L. (2006). Natural radioactivity in Brazilian groundwater. Journal of Environmental Radioactivity, 85(1), 71–83.

    Article  CAS  Google Scholar 

  • Han, J. H., & Park, K. H. (1996). Abundance of uranium and radon in groundwater of Taejeon area (in Korean with English abstract). Economic and Environmental Geology, 29(5), 589–595.

    Google Scholar 

  • Han, Y. L., Tom Kuo, M. C., Fan, K. C., Chiang, C. J., & Lee, Y. P. (2004). Radon distribution in groundwater of Taiwan. Hydrogeology Journal, 14(1), 173–179.

    Google Scholar 

  • ICRP (International Commission on Radiological Protection). (2010). Lung cancer risk from radon and progeny and statement on radon. International Commission on Radiological Protection, Publication 115. Annals of the ICRP, 40(1), 64.

    Google Scholar 

  • Jobbágy, V., Altzitzoglou, T., Malo, P., Tanner, V., & Hult, M. (2017). A brief overview on radon measurements in drinking water. Journal of Environmental Radioactivity, 173(1), 18–24.

    Article  Google Scholar 

  • Khursheed, A. (2000). Doses to systemic tissues from radon gas. Radiation Protection Dosimetry, 88(2), 171–181.

    Article  CAS  Google Scholar 

  • KIGAM (1995). Geological map of Korea (1: 1,000,000) (In Korean). Korea Institute of Geology, Mining, and Materials, Daejeon, Korea.

  • King, P. T., Michel, J., & Moore, W. S. (1982). Ground water geochemistry of 226Ra, 226Ra and 220Rn. Geochimicaet Cosmochimica Acta, 46, 1173–1182.

    Article  CAS  Google Scholar 

  • Loomis, D. P. (1987). Radon-222 concentration and aquifer lithology in North Carolina. Groundwater Monitoring and Remediation, 7(2), 33–39.

    Article  CAS  Google Scholar 

  • MOE (Ministry of Environment) (2010). Status of community groundwater system in 2009 (in Korean).

  • NCRP (National Council on Radiation Protection and Measurements) (1984). Exposures from the uranium series with emphasis on radon and its daughters. NCRP report no. 77.

  • NHMRC (National Health and Medical Research Council) (2015). Australian drinking water guidelines 6. Version 3.1.

  • NIER (National Institute of Environmental Research) (1999). Studies on the radionuclides concentrations in groundwater. KIGAM report, 338.

  • NIER (National Institute of Environmental Research) (2006). Studies on the naturally occurring radionuclides in groundwater (in Korean with English abstract). KIGAM report, 200.

  • NIER (National Institute of Environmental Research) (2015). Studies on the naturally occurring radionuclides in groundwater in the multi-geologic areas (15) (in Korean with English abstract). NIER-SP2015-386, 203.

  • Noh, H. J., Jeong, D. H., Yoon, J. K., Kim, M. S., Ju, B. K., Jeon, S. S., & Kim, T. S. (2011). Natural reduction characteristics of radon in drinking groundwater (in Korean with English abstract). Journal of Soil and Groundwater Environment, 16(1), 12–18.

    Article  Google Scholar 

  • Pinti, D. L., Retailleau, S., Barnetche, D., Moreira, F., Mortiz, A. M., Larocque, M., Gelinas, Y., Lefebvre, R., Helie, J. F., & Valadez, A. (2014). 222Rn activity in groundwater of the St. Lawrence Lowlands, Quebec, eastern Canada: relation with local geology and health hazard. Journal of Environmental Radioactivity, 136(1), 206–217.

    Article  CAS  Google Scholar 

  • Salonen, L. (1994). 238U series radionuclides as a source of increased radioactivity in ground water originating from Finnish bedrock. In Proceedings of IAHS Helsinki Conference, “Future Groundwater Resources at Risk,” International Association of Hydrological Sciences Publications. No. 222, 71–84.

  • Salonen, L., & Hukkanen, H. (1997). Advantages of low-background liquid scintillation alpha-spectrometry and pulse shape analysis in measuring radon, uranium, and radium-226 in groundwater samples. Journal of Radioanalytical and Nuclear Chemistry, 226(1), 67–74.

    Article  CAS  Google Scholar 

  • Shin, D. B., & Kim, S. J. (2011). Geochemical characteristics of black slate and coaly slate from the uranium deposit in Deokpyeong area (in Korean with English abstract). Economic and Environmental Geology, 44(5), 373–386.

    Article  Google Scholar 

  • Skeppstrom, K., & Olofsson, B. (2006). A prediction method for radon in groundwater using GIS and multivariate statistics. The Science of the Total Environment, 367, 666–680.

    Article  Google Scholar 

  • Skeppstrom, K., & Olofsson, B. (2007). Uranium and radon in groundwater–an overview of the problem. European Water, 17(18), 51–62.

    Google Scholar 

  • Telahigue, F., Agoubi, B., Soudid, F., & Kharroubi, A. (2018). Groundwater chemistry and radon-222 distribution in Jerba island, Tunisia. Journal of Environmental Radioactivity, 182(1), 74–84.

    Article  CAS  Google Scholar 

  • USEPA (United States Environmental Protection Agency) (1999). Proposed radon in drinking water rule, Office of Water, EPA 815-F-99-006.

  • USGS (United States Geological Survey) (2011). Trace elements and radon in groundwater across the United States, 1992-2003, National Water-Quality Assessment Program. U.S. Geological Survey, Scientific Investigations Report 2011–5059, 115.

  • Voutilainen, A., Mäkeläinen, I., Huikuri, P., & Salonen, L. (2000). Radon atlas of wells drilled into bedrock in Finland. STUK-A171. Helsinki: Säteilyturvakeskus.

    Google Scholar 

  • WHO (World Health Organization) (2008). Guidelines for drinking-water quality, 3rd edition. Vol. 1 recommendations. Geneva.

  • Yun, U., Kim, T. S., Kim, H. K., Kim, M. S., Cho, S. Y., Choo, C. O., & Cho, B. W. (2017). Natural radon reduction rate of the community groundwater system in South Korea. Applied Radiation and Isotopes, 126(1), 23–25.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Institute of Environmental Research (NIER-SP2015-386) and the Korea Institute of Geosciences and Mineral Resources (Gp2015-014-2016(2)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Oh Choo.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, B.W., Kim, H.K., Kim, M.S. et al. Radon concentrations in the community groundwater system of South Korea. Environ Monit Assess 191, 189 (2019). https://doi.org/10.1007/s10661-019-7301-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7301-y

Keywords

Navigation