Skip to main content

Advertisement

Log in

Effect of environmental variables on phytonutrients of Origanum vulgare L. in the sub-humid region of the northwestern Himalayas

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Ecological and soil physiochemical parameters impact the crop quality and development. In spite of the huge commercial prospective, the phytonutrient and chemometric profiles of Himalayan oregano (Origanum vulgare L.) have not been evaluated, and their relationships with ecological parameters are still lacking. The objective of this research study was to evaluate the disparity in the phytonutrient profiles of different ecotypes of O. vulgare in wild and cultivated populations and determine whether such variation was related to the diverse climatic and edaphic conditions prevailing in the northwestern Himalayas. Micrometeorological, atomic absorption spectroscopy for micro-elemental analysis was determined for soil. HPLC was used to determine the disparity in phytonutrient (quercetin, betacarotene, ascorbic acid, and catechin) and phytochemical (arbutin) levels. Cultivated populations had lower phytonutrient levels than wild populations. The habitat exhibiting pH values ranging from 6 to 7 elevated organic carbon (2.42%), nitrogen (97.41 kg ha−1), and manganese (10–12 μg g−1) and zinc contents (0.39–0.50%) show luxirant growth of Origanum vulgarel. The phytonutrient (quercetin, betacarotene, ascorbic acid, arbutin, and catechin) levels had a direct relationship with UV-B flux (r2 = 0.82) and potassium (r2 = 0.97). Wild accessions predominantly contained catechin and ascorbic acid, with maximum values of 163.8 and 46.88 μg g−1, respectively, while the cultivated accessions had the highest level of arbutin (53.42 μg g−1). Maximum variation was observed in quercetin (114.61%) followed by β-carotene (87.53%). Cultivated accessions had less quercetin (0.04–1.25 μg g−1) than wild accessions (1.25–2.87 μg g−1). Wild accessions had higher phytonutrient values for catechin, β-carotene, and ascorbic acid while cultivated accessions had maximum values for arbutin. The correlation of environmental variables with phytonutrient levels paves the way for metabolomic-guided enhancement of agricultural practices for better herb quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahmed, S., & Stepp, J. R. (2016). Beyond yields: Climate change effects on specialty crop quality and agroecological management. Elementa: Science of the Anthropocene, 4, 000092.

    Google Scholar 

  • Ahmed, S., Orians, C. M., Griffin, T. S., Buckley, S., Unachukwu, U., Stratton, A. E., Stepp, J. R., Robbat, A., Cash, S., & Kennelly, E. J. (2013). Effects of water availability and pest pressures on tea (Camellia sinensis) growth and functional quality. AoB Plants, 6, plt054–plt054.

    Google Scholar 

  • Ahmed, S., Stepp, J., & Dayuan, X. (2014a). Cultivating botanicals for sensory quality: From good agricultural practices to taste discernment by smallholder tea farmers. In Botanicals (pp. 15–30). Boca Raton: CRC Press.

    Google Scholar 

  • Ahmed, S., Stepp, J. R., Orians, C., Griffin, T., Matyas, C., Robbat, A., Cash, S., Xue, D., Long, C., Unachukwu, U., Buckley, S., Small, D., & Kennelly, E. (2014b). Effects of extreme climate events on tea (Camellia sinensis) functional quality validate indigenous farmer knowledge and sensory preferences in tropical China. PLoS One, 9, e109126.

    Article  Google Scholar 

  • Amir Aslani, B., & Ghobadi, S. (2016). Studies on oxidants and antioxidants with a brief glance at their relevance to the immune system. Life Sciences, 146, 163–173.

    Article  CAS  Google Scholar 

  • Arzac, A., García-Cervigón, A. I., Vicente-Serrano, S. M., Loidi, J., & Olano, J. M. (2016). Phenological shifts in climatic response of secondary growth allow Juniperus sabina L. to cope with altitudinal and temporal climate variability. Agricultural and Forest Meteorology, 217, 35–45.

    Article  Google Scholar 

  • Azizi, A. (2010). Genetic, chemical and agro-morphological evaluation of the medicinal plant Origanum vulgare L. for marker assisted improvement of pharmaceutical quality (Doctoral dissertation, Universitätsbibliothek Giessen).

  • Azizi, A., Yan, F., & Honermeier, B. (2009). Herbage yield, essential oil content and composition of three oregano (Origanum vulgare L.) populations as affected by soil moisture regimes and nitrogen supply. Industrial Crops and Products, 29, 554–561.

    Article  CAS  Google Scholar 

  • Barański, M., Średnicka-Tober, D., Volakakis, N., Seal, C., Sanderson, R., Stewart, G. B., Benbrook, C., Biavati, B., Markellou, E., Giotis, C., Gromadzka-Ostrowska, J., Rembiałkowska, E., Skwarło-Sońta, K., Tahvonen, R., Janovská, D., Niggli, U., Nicot, P., & Leifert, C. (2014). Higher antioxidant and lower cadmium concentrations and lower incidence of pesticide residues in organically grown crops: A systematic literature review and meta-analyses. The British Journal of Nutrition, 112, 794–811.

    Article  Google Scholar 

  • Barnes, P. W., Tobler, M. A., Keefover-Ring, K., Flint, S. D., Barkley, A. E., Ryel, R. J., & Lindroth, R. L. (2015). Rapid modulation of ultraviolet shielding in plants is influenced by solar ultraviolet radiation and linked to alterations in flavonoids. Plant, Cell & Environment, 39, 222–230.

    Article  Google Scholar 

  • Bisht, D., Chanotiya, C. S., Rana, M., & Semwal, M. (2009). Variability in essential oil and bioactive chiral monoterpenoid compositions of Indian oregano (Origanum vulgare L.) populations from northwestern Himalaya and their chemotaxonomy. Industrial Crops and Products, 30, 422–426.

    Article  CAS  Google Scholar 

  • Björkman, M., Klingen, I., Birch, A. N. E., Bones, A. M., Bruce, T. J. A., Johansen, T. J., Meadow, R., Mølmann, J., Seljåsen, R., Smart, L. E., & Stewart, D. (2011). Phytochemicals of Brassicaceae in plant protection and human health—Influences of climate, environment and agronomic practice. Phytochemistry, 72, 538–556.

    Article  Google Scholar 

  • Chobot, V., Huber, C., Trettenhahn, G., & Hadacek, F. (2009). (±)-Catechin: Chemical weapon, antioxidant, or stress regulator? Journal of Chemical Ecology, 35, 980–996.

    Article  CAS  Google Scholar 

  • Conforti, F., Marrelli, M., Carmela, C., Menichini, F., Valentina, P., Uzunov, D., Statti, G. A., Duez, P., & Menichini, F. (2011). Bioactive phytonutrients (omega fatty acids, tocopherols, polyphenols), in vitro inhibition of nitric oxide production and free radical scavenging activity of non-cultivated Mediterranean vegetables. Food Chemistry, 129, 1413–1419.

    Article  CAS  Google Scholar 

  • Dhar, A. K., & Dhar, R. S. (2000). Culinary and potherbs of Jammu and Kashmir. Journal of Herbs Spices & Medicinal Plants, 7, 7–18.

    Article  Google Scholar 

  • Dudai, N. (2006). Optimization and improvement of phenolic monoterpenes production in oregano (Origanum spp.). Acta Horticulturae, 778(778):15–28. https://doi.org/10.17660/ActaHoctic.2008.778.1

  • Dudai, N., & Belanger, F. C. (2016). Aroma as a factor in the breeding process of fresh herbs—the case of basil. In Biotechnology in flavor production (pp. 161–168). Wiley.

  • Dumas, Y., Dadomo, M., Di Lucca, G., & Grolier, P. (2003). Effects of environmental factors and agricultural techniques on antioxidantcontent of tomatoes. Journal of the Science of Food and Agriculture, 83, 369–382.

    Article  CAS  Google Scholar 

  • Gargallo-Garriga, A, Pérez Trujillo, M, Sardans, J, Peñuelas i Reixach, J, Parella Coll, T (2015) Metabolomics and stoichiometry adapted to the study of environmental impacts on plants. Doctoral dissertation, Universitat Autònoma de Barcelona.

  • Gargallo-Garriga, A., Sardans, J., Pérez-Trujillo, M., Guenther, A., Llusià, J., Rico, L., Terradas, J., Farré-Armengol, G., Filella, I., Parella, T., & Peñuelas, J. (2016). Shifts in plant foliar and floral metabolomes in response to the suppression of the associated microbiota. BMC Plant Biology, 16, 78.

    Article  Google Scholar 

  • Ghasemzadeh, A., Ashkani, S., Baghdadi, A., Pazoki, A., Jaafar, H., & Rahmat, A. (2016). Improvement in flavonoids and phenolic acids production and pharmaceutical quality of sweet basil (Ocimum basilicum L.) by ultraviolet-B irradiation. Molecules, 21, 1203.

    Article  Google Scholar 

  • Hamzah, R. U., Jigam, A. A., Makun, H. A., & Egwim, E. C. (2013). Antioxidant properties of selected African vegetables, fruits and mushrooms: A review. In Mycotoxin and food safety in developing countries. InTech.

  • Huang, W., Zhang, J., & Moore, D. D. (2004). A traditional herbal medicine enhances bilirubin clearance by activating the nuclear receptor CAR. Journal of Clinical Investigation, 113, 137–143.

    Article  CAS  Google Scholar 

  • Jan, S., Kamili, A. N., Parray, J. A., Bedi, Y. S., & Ahmad, P. (2016). Microclimatic variation in UV perception and related disparity in tropane and quinolizidine alkaloid composition of Atropa acuminata, Lupinus polyphyllus and Hyoscyamus niger. Journal of Photochemistry and Photobiology B: Biology, 161, 230–235.

    Article  CAS  Google Scholar 

  • Kirakosyan, A., Kaufman, P., Warber, S., Zick, S., Aaronson, K., Bolling, S., & Chul Chang, S. (2004). Applied environmental stresses to enhance the levels of polyphenolics in leaves of hawthorn plants. Physiologia Plantarum, 121, 182–186.

    Article  CAS  Google Scholar 

  • Körner, C. (2003). Alpine plant life. Berlin Heidelberg: Springer.

    Book  Google Scholar 

  • Kumari, R., & Agrawal, S. B. (2010). Supplemental UV-B induced changes in leaf morphology, physiology and secondary metabolites of an Indian aromatic plant Cymbopogon citratus (D.C.) Staph under natural field conditions. International Journal of Environmental Studies, 67, 655–675.

    Article  CAS  Google Scholar 

  • Lagouri, V., & Alexandri, G. (2013). Antioxidant properties of greek O. dictamnus and R. officinalis methanol and aqueous extracts—HPLC determination of phenolic acids. International Journal of Food Properties, 16, 549–562.

    Article  CAS  Google Scholar 

  • Landi, M., Pardossi, A., Remorini, D., & Guidi, L. (2013). Antioxidant and photosynthetic response of a purple-leaved and a green-leaved cultivar of sweet basil (Ocimum basilicum) to boron excess. Environmental and Experimental Botany, 85, 64–75.

    Article  CAS  Google Scholar 

  • Larcher, W. (1995). Physiological plant ecology. Berlin Heidelberg: Springer.

    Book  Google Scholar 

  • Lester, G. E. (2006). Environmental regulation of human health nutrients (ascorbic acid, carotene, and folic acid) in fruits and vegetables. HortScience, 41, 59–64.

    CAS  Google Scholar 

  • Lester, G. E. (2008). Antioxidant, sugar, mineral, and phytonutrient concentrations across edible fruit tissues of Orange-fleshed honeydew melon (Cucumis melo L.). Journal of Agricultural and Food Chemistry, 56, 3694–3698.

    Article  CAS  Google Scholar 

  • Leyva, R., Constán-Aguilar, C., Blasco, B., Sánchez-Rodríguez, E., Romero, L., Soriano, T., & Ruíz, J. M. (2013). Effects of climatic control on tomato yield and nutritional quality in Mediterranean screenhouse. Journal of the Science of Food and Agriculture, 94, 63–70.

    Article  Google Scholar 

  • Lydon, J., Casale, J. F., Kong, H., Sullivan, J. H., Daughtry, C. S., & Bailey, B. (2009). The effects of ambient solar UV radiation on alkaloid production by Erythroxylum novogranatense var. novogranatense. Photochemistry and Photobiology, 85, 1156–1161.

    Article  CAS  Google Scholar 

  • Lyu, L., Suvanto, S., Nöjd, P., Henttonen, H. M., Mäkinen, H., & Zhang, Q.-B. (2017). Tree growth and its climate signal along latitudinal and altitudinal gradients: Comparison of tree rings between Finland and the Tibetan Plateau. Biogeosciences, 14, 3083–3095.

    Article  Google Scholar 

  • Mattos, L.M., Moretti, C.L., Jan, S., Sargent, S.A., Lima, C.E.P. & Fontenelle, M.R. (2014). Climate changes and potential impacts on quality of fruit and vegetable crops. In Emerging technologies and management of crop stress tolerance (pp. 467–486). Elsevier.

  • Mikkelsen, R. L. (2005). Tomato flavor and plant nutrition: A brief review. Better Crops with Plant Food, 89, 14–15.

    Google Scholar 

  • Myers, S. S., Zanobetti, A., Kloog, I., Huybers, P., Leakey, A. D. B., Bloom, A. J., Carlisle, E., Dietterich, L. H., Fitzgerald, G., Hasegawa, T., Holbrook, N. M., Nelson, R. L., Ottman, M. J., Raboy, V., Sakai, H., Sartor, K. A., Schwartz, J., Seneweera, S., Tausz, M., & Usui, Y. (2014). Increasing CO2 threatens human nutrition. Nature, 510, 139–142.

    Article  CAS  Google Scholar 

  • Nenadis, N., Llorens, L., Koufogianni, A., Díaz, L., Font, J., Gonzalez, J. A., & Verdaguer, D. (2015). Interactive effects of UV radiation and reduced precipitation on the seasonal leaf phenolic content/composition and the antioxidant activity of naturally growing Arbutus unedo plants. Journal of Photochemistry and Photobiology B: Biology, 153, 435–444.

    Article  CAS  Google Scholar 

  • Neugart, S., Zietz, M., Schreiner, M., Rohn, S., Kroh, L. W., & Krumbein, A. (2012). Structurally different flavonol glycosides and hydroxycinnamic acid derivatives respond differently to moderate UV-B radiation exposure. Physiologia Plantarum, 145, 582–593.

    Article  CAS  Google Scholar 

  • Nurmi, T., Mursu, J., Heinonen, M., Nurmi, A., Hiltunen, R., & Voutilainen, S. (2009). Metabolism of berry anthocyanins to phenolic acids in humans. Journal of Agricultural and Food Chemistry, 57, 2274–2281.

    Article  CAS  Google Scholar 

  • Rivas-Ubach, A., Pérez-Trujillo, M., Sardans, J., Gargallo-Garriga, A., Parella, T., & Peñuelas, J. (2013). Ecometabolomics: Optimized NMR-based method. Methods in Ecology and Evolution, 4, 464–473.

    Article  Google Scholar 

  • Rodríguez-Meizoso, I., Marin, F., Herrero, M., Señorans, F. J., Reglero, G., Cifuentes, A., & Ibáñez, E. (2006). Subcritical water extraction of nutraceuticals with antioxidant activity from oregano. Chemical and functional characterization. Journal of Pharmaceutical and Biomedical Analysis, 41, 1560–1565.

    Article  Google Scholar 

  • Rosales, M. A., Cervilla, L. M., Sánchez-Rodríguez, E., Rubio-Wilhelmi, M. M., Blasco, B., Ríos, J. J., Soriano, T., Castilla, N., Romero, L., & Ruiz, J. M. (2010). The effect of environmental conditions on nutritional quality of cherry tomato fruits: Evaluation of two experimental Mediterranean greenhouses. Journal of the Science of Food and Agriculture, 91, 152–162.

    Article  Google Scholar 

  • Ryan, J., Estefan, G., Rashid, A. (2007). Soil and plant analysis laboratory manual (pp. 46–48). Aleppo, ICARDA.

  • Sardans, J., Rivas-Ubach, A., & Peñuelas, J. (2011a). The elemental stoichiometry of aquatic and terrestrial ecosystems and its relationships with organismic lifestyle and ecosystem structure and function: A review and perspectives. Biogeochemistry, 111, 1–39.

    Article  Google Scholar 

  • Sardans, J., Rivas-Ubach, A., & Peñuelas, J. (2011b). Factors affecting nutrient concentration and stoichiometry of forest trees in Catalonia (NE Spain). Forest Ecology and Management, 262, 2024–2034.

    Article  Google Scholar 

  • Sardans, J., Rivas-Ubach, A., & Peñuelas, J. (2012). The C:N:P stoichiometry of organisms and ecosystems in a changing world: A review and perspectives. Perspectives in Plant Ecology, Evolution and Systematics, 14, 33–47.

    Article  Google Scholar 

  • Sarikurkcu, C., Zengin, G., Oskay, M., Uysal, S., Ceylan, R., & Aktumsek, A. (2015). Composition, antioxidant, antimicrobial and enzyme inhibition activities of two Origanum vulgare subspecies (subsp. vulgare and subsp. hirtum) essential oils. Industrial Crops and Products, 70, 178–184.

    Article  CAS  Google Scholar 

  • Schreiner, M., Mewis, I., Huyskens-Keil, S., Jansen, M. A. K., Zrenner, R., Winkler, J. B., O’Brien, N., & Krumbein, A. (2012). UV-B-induced secondary plant metabolites—potential benefits for plant and human health. Critical Reviews in Plant Sciences, 31, 229–240.

    Article  CAS  Google Scholar 

  • Shimizu, H. (2016). Effect of light quality on secondary metabolite production in leafy greens and seedlings. In T Kozai, K Fujiwara E Runkle (Eds.), LED Lighting for Urban Agriculture (pp. 239–260). Singapore: Springer.

    Chapter  Google Scholar 

  • Singh, D. P., Beloy, J., McInerney, J. K., & Day, L. (2012). Impact of boron, calcium and genetic factors on vitamin C, carotenoids, phenolic acids, anthocyanins and antioxidant capacity of carrots (Daucus carota). Food Chemistry, 132, 1161–1170.

    Article  CAS  Google Scholar 

  • Tharayil, N., Suseela, V., Triebwasser, D. J., Preston, C. M., Gerard, P. D., & Dukes, J. S. (2011). Changes in the structural composition and reactivity of Acer rubrum leaf litter tannins exposed to warming and altered precipitation: Climatic stress-induced tannins are more reactive. New Phytologist, 191, 132–145.

    Article  CAS  Google Scholar 

  • Thompson, J. R., Foster, D. R., Scheller, R., & Kittredge, D. (2011). The influence of land use and climate change on forest biomass and composition in Massachusetts, USA. Ecological Applications, 21, 2425–2444.

    Article  Google Scholar 

  • Tuttolomondo, T., La Bella, S., Licata, M., Virga, G., Leto, C., Saija, A., Trombetta, D., Tomaino, A., Speciale, A., Napoli, E. M., Siracusa, L., Pasquale, A., Curcuruto, G., & Ruberto, G. (2013). Biomolecular characterization of wild Sicilian oregano: Phytochemical screening of essential oils and extracts, and evaluation of their antioxidant activities. Chemistry & Biodiversity, 10, 411–433.

    Article  CAS  Google Scholar 

  • Varshney, R. K., Bansal, K. C., Aggarwal, P. K., Datta, S. K., & Craufurd, P. Q. (2011). Agricultural biotechnology for crop improvement in a variable climate: Hope or hype? Trends in Plant Science, 16, 363–371.

    Article  CAS  Google Scholar 

  • Verma, R. S., Padalia, R. C., Chauhan, A., Verma, R. K., Yadav, A. K., & Singh, H. P. (2010). Chemical diversity in Indian oregano (Origanum vulgare L.). Chemistry & Biodiversity, 7, 2054–2064.

    Article  CAS  Google Scholar 

  • Waha, K., Müller, C., Bondeau, A., Dietrich, J. P., Kurukulasuriya, P., Heinke, J., & Lotze-Campen, H. (2013). Adaptation to climate change through the choice of cropping system and sowing date in sub-Saharan Africa. Global Environmental Change, 23, 130–143.

    Article  Google Scholar 

  • Wildi, B., & Lutz, C. (1996). Antioxidant composition of selected high alpine plant species from different altitudes. Plant, Cell and Environment, 19, 138–146.

    Article  CAS  Google Scholar 

  • Wilkens, R. T., Spoerke, J. M., & Stamp, N. E. (1996). Differential responses of growth and two soluble phenolics of tomato to resource availability. Ecology, 77, 247–258.

    Article  Google Scholar 

Download references

Acknowledgements

All authors are thankful to funding agency DST-SERB for providing research grant under DST No.: SERB/LS-261/2014 to acquire adequate resources for completion of research studies. The authors are thankful to Dr. Gurcharan Singh, Retired Professor, Department of Taxonomy, University of Delhi for identification of Origanum vulgare L. The authors also would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for funding this research group no. (RG-1438-039).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumira Jan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOC 119 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jan, S., Mir, J.I., Singh, D.B. et al. Effect of environmental variables on phytonutrients of Origanum vulgare L. in the sub-humid region of the northwestern Himalayas. Environ Monit Assess 190, 571 (2018). https://doi.org/10.1007/s10661-018-6951-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-018-6951-5

Keywords

Navigation