Skip to main content

Advertisement

Log in

Responses of the zooplankton community to peak and waning periods of El Niño 2015–2016 in Kavaratti reef ecosystem, northern Indian Ocean

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The study addressed the impact of the El Niño 2015–2016 on the ecosystem functioning and the subsequent effects on the distribution and community structure of zooplankton in the Kavaratti reef, a prominent coral atoll in the tropical Indian Ocean. The elevated ocean temperature (SST) associated with El Niño resulted in a mass bleaching event affecting > 60% of the live corals of the Kavaratti atoll. The concomitant changes observed in the nutrient concentration, coral health, and phytoplankton of the reef environment during the course of the El Niño led to discernible variations in the zooplankton community with markedly higher abundance and heterogeneity in distribution during the peak period of El Niño compared to its waning phase. A notable shift was also evident in the community structure of Copepoda, the dominant zooplankton taxon, with a predominance of calanoids and poecilostomatoids in the peak period and by harpacticoid copepods in the waning phase of the El Niño. The harpacticoid, Macrosetella gracilis, dominated in the waning phase because of their unique adaptability in the utilization of Trichodesmium erythraeum, both as nutritional and physical substrates in the nutrient-depleted environment of the reef ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Achuthankutty, C. T., Nair, S. R., Haridas, P., & Madhupratap, M. (1989). Zooplankton composition of the Kalpeni and Agatti atolls, Lakshadweep archipelago. Indian Journal of Marine Science, 18, 151–154.

    Google Scholar 

  • Armbrust, E. V. (2009). The life of diatoms in the world’s oceans. Nature, 459, 185–192.

    Article  CAS  Google Scholar 

  • Arthur, R. (2000). Coral bleaching and mortality in three Indian reef regions during an El Niño southern oscillation event. Current Science, 79, 1723–1729.

    Google Scholar 

  • Baker, A. C., Glynn, P. W., & Riegl, B. (2008). Climate change and coral reef bleaching: an ecological assessment of long-term impacts, recovery trends and future outlook. Estuarine Coastal and Shelf Science, 80, 435–471.

    Article  Google Scholar 

  • Bakun, A., & Broad, K. (2003). Environmental ‘loopholes’ and fish population dynamics: comparative pattern recognition with focus on El Nino effects in the Pacific. Fisheries Oceanography, 12, 458–473.

    Article  Google Scholar 

  • Barton, B. A., Morgan, J. D., Vijayan, M. M., & Adams, S. M. (2002). Physiological and condition-related indicators of environmental stress in fish. In S. M. Adams (Ed.), Biological indicators of aquatic ecosystem stress (pp. 111–148). Bethesda: American Fisheries Society.

    Google Scholar 

  • Bergman, B., Sandh, G., Lin, S., Larsson, J., & Carpenter, E. J. (2013). Trichodesmium—a widespread marine cyanobacterium with unusual nitrogen fixation properties. FEMS Microbiology Reviews, 37, 286–302.

    Article  CAS  Google Scholar 

  • Bjӧrnberg, T. K. S. (1965). Observations on the development and the biology of the Miracidae Dana (Copepoda: Crustacea). Bulletin of Marine Science, 15, 512–520.

    Google Scholar 

  • Bӧttger-Schnack, R., & Schnack, D. (1989). Vertical distribution and population structure of Macrosetella gracilis (Copepoda: Harpacticoida) in the Red Sea in relation to the occurrence of Oscillatoria (Trichodesmium) spp (Cyanobacteria). Marine Ecology Progress Series, 52, 17–31.

    Article  Google Scholar 

  • Bravo, I., Fernandez, M. L., & Martinez, R. A. (2001). Toxin composition of the toxic dinoflagellate Prorocentrum lima isolated from different locations along the Galician coast (NW Spain). Toxicon, 39, 1537–1545.

    Article  CAS  Google Scholar 

  • Brown, B. E., & Bythell, J. C. (2005). Perspectives on mucus secretion in reef corals. Marine Ecology Progress Series, 296, 291–309.

    Article  CAS  Google Scholar 

  • Carpenter, E. J., & Price, C. C. (1977). Nitrogen fixation, distribution, and production of Oscillatoria (Trichodesmium) spp. in the western Sargasso and Caribbean Seas. Limnology and Oceanography, 22, 60–72.

    Article  CAS  Google Scholar 

  • Chen, S., Wu, R., Chen, W., Yu, B., & Cao, X. (2016). Genesis of westerly wind bursts over the equatorial western Pacific during the onset of the strong 2015–2016 El Niño. Atmospheric Science Letters, 17, 384–391.

    Article  Google Scholar 

  • Claar, D. C., Szostek, L., McDevitt-Irwin, J. M., Schanze, J. J., & Baum, J. K. (2018). Global patterns and impacts of El Niño events on coral reefs: a meta-analysis. PLoS One, 13(2), e0190957.

    Article  Google Scholar 

  • Clarke, K. R., & Gorley, R. N. (2015). PRIMER v7: user manual/tutorial. Plymouth: PRIMER-E.

    Google Scholar 

  • Clifford, H. T., & Stephensen, W. (1975). An introduction to numerical classification. New York: Academic Press.

    Google Scholar 

  • Coles, S. L., & Strathmann, R. (1973). Observations on coral mucus “flocs” and their potential trophic significance. Limnology and Oceanography, 18, 673–678.

    Article  Google Scholar 

  • Conway, D. V. P., White, R. G., Hugues-Dit-Ciles, J., Gallienne, C. P., & Robins, D. B. (2003). Guide to the coastal and surface zooplankton of the South-Western Indian Ocean. Plymouth: Marine Biological Association of the United Kingdom.

    Google Scholar 

  • Costello, M. J., & Chaudhary, C. (2017). Marine biodiversity, biogeography, deep-sea gradients, and conservation. Current Biology, 27, R511–R527.

    Article  CAS  Google Scholar 

  • De Goeij, J. M., Van Oevelen, D., Vermeij, M. J., Osinga, R., Middelburg, J. J., de Goeij, A. F., & Admiraal, W. (2013). Surviving in a marine desert: the sponge loop retains resources within coral reefs. Science, 342, 108–110.

    Article  CAS  Google Scholar 

  • Diaz-Pulido, G., McCook, L. J., Dove, S., Berkelmans, R., Roff, G., Kline, D. I., Weeks, S., Evans, R. D., Williamson, D. H., & Hoegh-Guldberg, O. (2009). Doom and boom on a resilient reef: climate change, algal overgrowth and coral recovery. PLoS One, 4(4), e5239.

    Article  CAS  Google Scholar 

  • Ducklow, H. W., & Mitchell, R. (1979). Composition of mucus released by coral reef coelenterates. Limnology and Oceanography, 24, 706–714.

    Article  CAS  Google Scholar 

  • Eakin, M. (2016). Outlook on coral bleaching: El Niño, the guest overstaying his welcome. Presentation in 35 Meeting Washington DC, February, 2016. https://www.coralreef.gov/meeting35/pdf/7_2016_Outlook_on_Coral_Bleaching.

  • Eberl, R., Cohen, S., Cipriano, F., & Carpenter, E. J. (2007). Genetic diversity of the pelagic harpacticoid copepod Macrosetella gracilis on colonies of the cyanobacterium Trichodesmium spp. Aquatic Biology, 1, 33–43.

    Article  CAS  Google Scholar 

  • Edwards, M., & Richardson, A. J. (2004). Impact of climate change on marine pelagic phenology and trophic mismatch. Nature, 430, 881–884.

    Article  CAS  Google Scholar 

  • Gerber, R., & Gerber, M. (1979). Ingestion of natural particulate organic matter and subsequent assimilation, respiration and growth by tropical lagoon zooplankton. Marine Biology, 52, 33–43.

    Article  Google Scholar 

  • Glynn, P. W. (1988). El Niño-Southern Oscillation 1982-1983: nearshore population, community, and ecosystem responses. Annual Review of Ecology Evolution and Systematics, 19, 309–346.

    Article  Google Scholar 

  • Glynn, P. W., Mones, A. B., Podestá, G. P., Colbert, A., & Colgan, M. W. (2017). El Niño-Southern Oscillation: Effects on Eastern Pacific coral reefs and associated biota. In P. W. Glynn, D. P. Manzello, & I. C. Enochs (Eds.), Coral reefs of the Eastern Tropical Pacific (pp. 251–290). Netherlands: Springer.

    Chapter  Google Scholar 

  • Gottfried, M., & Roman, M. R. (1983). Ingestion and incorporation of coral-mucus detritus by reef zooplankton. Marine Biology, 72, 211–218.

    Article  Google Scholar 

  • Grasshoff, K. (1983). Determination of oxygen. In K. Grasshoff, M. Ehrhardt, & K. Kremling (Eds.), Methods of sea water analysis (pp. 61–72). Weinheim: Verlag Chemie.

    Google Scholar 

  • Hagen, W. (2000). Biovolume and biomass determinations. In R. Harris, P. Wiebe, J. Lenz, H. R. Skjoldal, & M. E. Huntley (Eds.), ICES zooplankton methodology manual (pp. 87–147). London: Academic Press.

    Google Scholar 

  • Hancock, G. J., Webster, I., & Stieglitz, T. C. (2006). Horizontal mixing of Great Barrier Reef waters: offshore diffusivity determined from radium isotope distribution. Journal of Geophysical Research Oceans, 111, C12019. https://doi.org/10.1029/2006JC003608.

    Article  Google Scholar 

  • Haridas, P., & Madhupratap, M. (1977). Acartia dweepi, a new species of copepod (Acartidae, galanoida) from Lakshadweep. Current Science, 47, 176–177.

    Google Scholar 

  • Harris, R., Wiebe, P., Lenz, J., Skjoldal, H. R., & Huntley, M. E. (Eds.). (2000). ICES zooplankton methodology manual. London: Academic Press.

    Google Scholar 

  • Hays, G. C., Richardson, A. J., & Robinson, C. (2005). Climate change and marine plankton. Trends in Ecology and Evolution, 20, 337–344.

    Article  Google Scholar 

  • Hecky, R. E., & Kilham, P. (1988). Nutrient limitation of phytoplankton in freshwater and marine environments: a review of recent evidence on the effects of enrichment. Limnology and Oceanography, 33, 796–822.

    CAS  Google Scholar 

  • Heidelberg, K. B., O'Neil, K. L., Bythell, J. C., & Sebens, K. P. (2010). Vertical distribution and diel patterns of zooplankton abundance and biomass at Conch Reef, Florida Keys (USA). Journal of Plankton Research, 32, 75–91.

    Article  Google Scholar 

  • Houlbrèque, F., Tambutté, E., Allemand, D., & Ferrier-Pagès, C. (2004). Interactions between zooplankton feeding, photosynthesis and skeletal growth in the scleractinian coral Stylophora pistillata. Journal of Experimental Biology, 207, 1461–1469.

    Article  Google Scholar 

  • James, P. S. B. R. (2011). The Lakshadweep: islands of ecological fragility, environmental sensitivity and anthropogenic vulnerability. Journal of Coastal Environment, 2, 9–25.

    Google Scholar 

  • Kämpf, J., & Chapman, P. (2016). Upwelling systems of the world. A scientific journey to the most productive marine ecosystem. Switzerland: Springer.

    Google Scholar 

  • Karati, K. K., Vineetha, G., Madhu, N. V., Anil, P., Dayana, M., Shihab, B. K., Muhsin, A. I., Riyas, C., & Raveendran, T. V. (2017). Variability in the phytoplankton community of Kavaratti reef ecosystem (northern Indian Ocean) during peak and waning periods of El Niño 2016. Environmental Monitoring and Assessment, 189, 1–17.

    Article  CAS  Google Scholar 

  • Kelley, R. (2009). Indo Pacific coral finder. See www.byoguides.com.

  • Lefcheck, J. S., Byrnes, J. E., Isbell, F., et al. (2015). Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats. Nature Communications, 6, 1–7.

    Article  CAS  Google Scholar 

  • Luo, J. J., Zhang, R., Behera, S. K., Masumoto, Y., Jin, F. F., Lukas, R., & Yamagata, T. (2010). Interaction between El Nino and extreme Indian ocean dipole. Journal of Climate, 23, 726–742.

    Article  Google Scholar 

  • Madhupratap, M., Achuthankutty, C. T., & Nair, S. S. (1991). Zooplankton of the lagoons of the Laccadives: diel patterns and emergence. Journal of Plankton Research, 13, 947–958.

    Article  Google Scholar 

  • McPhaden, M. J. (2004). Evolution of the 2002/03 El Niño. Bulletin of the American Meteorological Society, 85, 677–695.

    Article  Google Scholar 

  • McPhaden, M. J., Zebiak, S. E., & Glantz, M. H. (2006). ENSO as an integrating concept in earth science. Science, 314, 1740–1745.

    Article  CAS  Google Scholar 

  • Morton, S. L., & Tindall, D. R. (1995). Morphological and biochemical variability of the toxic dinoflagellate Prorocentrum lima isolated from three locations at Heron Island, Australia. Journal of Phycology, 31, 914–921.

    Article  CAS  Google Scholar 

  • Muraleedharan, P. M., & Prasannakumar, S. (1996). Arabian Sea upwelling—a comparison between coastal and open ocean regions. Current Science, 71, 842–846.

    Google Scholar 

  • O'Neil, J. M. (1998). The colonial cyanobacterium Trichodesmium as a physical and nutritional substrate for the harpacticoid copepod Macrosetella gracilis. Journal of Plankton Research, 20, 43–59.

    Article  Google Scholar 

  • O'Neil, J. M., & Roman, M. R. (1994). Ingestion of the cyanobacterium Trichodesmium spp. by pelagic harpacticoid copepods Macrosetella, Miracia and Oculosetella. Hydrobiologia, 292, 235–240.

    Article  Google Scholar 

  • Richardson, A. J. (2008). In hot water: zooplankton and climate change. ICES Journal of Marine Science, 65, 279–295.

    Article  Google Scholar 

  • Richman, S., Loya, Y., & Sloboclkin, L. B. (1975). The rate of mucus production by corals and its assimilation by the coral reef copepod Acartia negligens. Limnology and Oceanography, 20, 918–923.

    Article  Google Scholar 

  • Seckbach, J., & Kociolek, J. P. (Eds.). (2011). The diatom world. New York: Springer.

    Google Scholar 

  • SenGupta, R., Mores, C., Kureishy, T. W., Sankaranarayanan, V. N., Jana, T. K., Naqvi, S. W. A., & Rajagopal, M. D. (1979). Chemical oceanography of the Arabian Sea: part IV—Laccadive Sea. Indian Journal of Geo-Marine Sciences, 8, 215–221.

    CAS  Google Scholar 

  • Sewell, R. B. S. (1999). The copepod of Indian seas. India: Daya Books.

    Google Scholar 

  • Shenoi, S. S. C., Shankar, D., & Shetye, S. R. (1999). On the sea surface temperature high in the Lakshadweep Sea before the onset of the southwest monsoon. Journal of Geophysical Research Oceans, 104(C7), 15703–15712.

    Article  Google Scholar 

  • Sohm, J. A., & Capone, D. G. (2006). Phosphorus dynamics of the tropical and subtropical North Atlantic: Trichodesmium spp. versus bulk plankton. Marine Ecology Progress Series, 317, 21–28.

    Article  CAS  Google Scholar 

  • Sommer, U. (2000). Scarcity of medium-sized phytoplankton in the northern Red Sea explained by strong bottom-up and weak top-down control. Marine Ecology Progress Series, 197, 19–25.

    Article  Google Scholar 

  • Stramma, L., Fischer, T., Grundle, D. S., Krahmann, G., Bange, H. W., & Marandino, C. A. (2016). Observed El Niño conditions in the eastern tropical Pacific in October 2015. Ocean Science, 12, 861–873.

    Article  Google Scholar 

  • Tomas, C. R. (1997). Identifying marine phytoplankton. New York: Academic Press.

    Google Scholar 

  • Trenberth, K. E., Branstator, G. W., Karoly, D., Kumar, A., Lau, N. C., & Ropelewski, C. (1998). Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. Journal of Geophysical Research Oceans, 103(C7), 14291–14324.

    Article  Google Scholar 

  • Van den Wollenberg, A. L. (1977). Redundancy analysis. An alternative for canonical correlation analysis. Psychometrika, 42, 207–219.

    Article  Google Scholar 

  • Vijay Anand, P. E., & Pillai, N. G. K. (2007). Coral reef fish abundance and diversity of seagrass beds in Kavaratti atoll, Lakshadweep, India. Indian Journal of Fisheries, 54, 11–20.

    Google Scholar 

  • Walther, G. R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T. J., Fromentin, J. M., Hoegh-Guldberg, O., & Bairlein, F. (2002). Ecological responses to recent climate change. Nature, 416, 389–395.

    Article  CAS  Google Scholar 

  • Warwick, R. M., Clarke, K. R., & Somerfield, P. J. (2008). k-Dominance curves. In S. E. Jørgensen & B. D. Fath (Eds.), Ecological indicators. 3, encyclopedia of ecology, 5 (pp. 2055–2057). Oxford: Elsevier.

    Google Scholar 

  • Wilson, S. G., Taylor, J. G., & Pearce, A. F. (2001). The seasonal aggregation of whale sharks at Ningaloo Reef, Western Australia: currents, migrations and the El Nino/Southern Oscillation. Environmental Biology of Fishes, 61, 1–11.

    Article  Google Scholar 

Download references

Acknowledgements

Our sincere thanks to CSIR-NIO, CMFRI, and DST, Lakshadweep for the facilities provided. KKK is thankful to CSIR for a post-doctoral fellowship. This is NIO contribution 6260.

Funding

This research program was supported by the Institutional project OLP 1210 of CSIR-NIO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Vineetha.

Electronic supplementary material

Supplementary Figure 1

The interrelation of the zooplankton abundance with the various size structured phytoplankton biomass. (PNG 11 kb)

High Resolution Image

(TIF 34 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vineetha, G., Karati, K.K., Raveendran, T.V. et al. Responses of the zooplankton community to peak and waning periods of El Niño 2015–2016 in Kavaratti reef ecosystem, northern Indian Ocean. Environ Monit Assess 190, 465 (2018). https://doi.org/10.1007/s10661-018-6842-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-018-6842-9

Keywords

Navigation