Skip to main content

Advertisement

Log in

Groundwater quality assessment in semi-arid regions using integrated approaches: the case of Grombalia aquifer (NE Tunisia)

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

As many arid and semi-arid regions in the Mediterranean Basin, the Grombalia coastal aquifer (NE Tunisia) is affected by severe groundwater exploitation and contamination. Therefore, quality assessments are becoming increasingly important as the long-term protection of water resources is at stake. Multidisciplinary investigations, like the one presented in this paper, are particularly effective in identifying the different origins of mineralization within an aquifer and investigating the impact of anthropogenic activities on groundwater quality. An integrated assessment, focused on the combined use of geostatistical, geochemical and isotopic (δ18O, δ2H and 3H) tools, was performed in the Grombalia aquifer between February and March 2014. The overall goal was to study the main processes controlling aquifer salinization, with special focus to nitrate contamination. Results indicate a persisting deterioration of water quality over the whole basin except the south-eastern zone juxtaposing the recharge area of the aquifer. Nitrate contents exceed the drinking water standard (50 mg/l) in 70% of groundwater samples, mainly due to the excessive use of fertilizers and urban activities. Stable isotope measurements showed the contribution of modern rainwater to aquifer recharge and proved the presence of evaporation contributing to the salinity increase. Tritium values of groundwater samples suggested two hypotheses: the existence of mixture between old and recent water or/and the existence of two recharge periods of the aquifer, pre- and post-nuclear weapons test. Principal component analysis confirmed the geochemical interpretation, highlighting that water-rock interaction evaporation effect and intensive anthropogenic activities constitute the main processes controlling the regional groundwater mineralization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Abid, K., Trabelsi, R., Zouari, K., & Abidi, I. (2009). Caractérisation hydrogéochimique de la nappe du Continental Intercalaire (sud tunisien)/Hydrogeochemical characterization of the Continental Intercalaire aquifer (southern Tunisia). Hydrological Sciences Journal, 54(3), 526–537. https://doi.org/10.1623/hysj.54.3.526

    Article  CAS  Google Scholar 

  • Baillargeon, S. (2005). Le krigeage : revue de la théorie et application à l’interpolation spatiale de données de précipitations. Maitrise en statistique pour l’obtention du grade de Maitre en sciences (pp. 20–21). Quebec: Faculté des études supérieures de l’Université Laval.

    Google Scholar 

  • Ben Ayed, N. (1993). Evolution tectonique de l’avant-pays de la chaîne alpine de la Tunisie du début du Mésozoïque à l’Actuel. Thèse d’État Uni. Paris-11, Orsay, Publ. Office Nat. Mines Tunis.

  • Ben Hamouda, M. F., Tarhouni, J., Leduc, C., & Zouari, K. (2010). Understanding the origin of salinization of the Plio-quaternary eastern coastal aquifer of Cap Bon (Tunisia) using geochemical and isotope investigations. Environmental Earth Sciences, 63(5), 889–901.

    Article  Google Scholar 

  • Ben Moussa, A., & Zouari, K. (2011). Hydrochemical investigation of groundwater contamination in the Grombalia shallow aquifer, Cap Bon Peninsula, Tunisia: impact of irrigation with industrial waste water. INTECH Open Access Publisher, ISBN: 978-953-307-233-3, InTech.

  • Ben Salem, H. (1992). Contribution à la connaissance de la géologie du Cap Bon: stratigraphie, tectonique et sédimentologie. Thèse 3éme cycle, Géol. Univ. Tunis II.

  • Boettcher, J., Strebel, O., Voerkelius, S., & Schmidt, H. L. (1990). Using isotope fractionation of nitrate-nitrogen and nitrate-oxygen for evaluation of microbial denitrification in a sandy aquifer. Journal of Hydrology, 114(3–4), 413–424. https://doi.org/10.1016/0022-1694(90)90068-9

    Article  CAS  Google Scholar 

  • Castany, G. (1948). Les fossés d’effondrement de Tunisie, Géologie et hydrologie. Plaine de Grombalia et cuvettes de la Tunisie Orientale. 1er fasc. In: Ann. Mines. Géol. N°3, pp. 18–39.

  • Castany, G. (1968). Traité pratique des eaux souterraines. Ed Dunod, Paris, 2ème édition, p 471.

  • Charfi, S. (2015). Etude hydrogéologique, hydrochimique et isotopique du système aquifère de Grombalia, cap bon, Tunisie Nord-Orientale. Thèse d’état Uni. Sfax, Tunisie. p50.

  • Charfi, S., Zouari, K., Feki, S., & Mami, E. (2013). Study of variation in groundwater quality in a coastal aquifer in north-eastern Tunisia using multivariate factor analysis. Quaternary International, 302, 199–209. https://doi.org/10.1016/j.quaint.2012.11.002

    Article  Google Scholar 

  • Chatfield, C., & Collins, A. J. (1980). Introduction to multivariate analysis (256 p). London: Chapman and Hall. https://doi.org/10.1007/978-1-4899-3184-9

    Book  Google Scholar 

  • Chenini, I., Zghibi, A., & Kouzana, L. (2015). Hydrogeological investigations and groundwater vulnerability assessment and mapping for groundwater resource protection and management: state of the art and a case study. Journal of African Earth Sciences, 109, 11–26. https://doi.org/10.1016/j.jafrearsci.2015.05.008

    Article  Google Scholar 

  • Clark, I., & Fritz, P. (1997). Environmental isotopes in hydrogeology. CRC Press, p. 328.

  • CRDA (2016) Commissariat Régional du Développement Agricole, carte d’occupation du sol de la plaine de Grombalia.

  • DGRE (1990–2015). General Direction of Water Ressources, annuaires d’exploitation des nappes phréatiques en Tunisie.

  • Dulinski, M., Rozanski, K., Kania, J., Karlikowska, J., Korczynski-Jackowicz, M., Witczak, S., Mochalski, P., Opoka, M., Sliwka, I., & Zuber, A. (2003). Groundwater dating with sulfur hexafluoride: methodology and field comparison with tritium and hydrodynamic methods. International symposium, International Atomic Energy Agency, Vienna, Austria, IAEA-CN-104/8.

  • Edmunds, W. M. (2009). Palaeoclimate and groundwater evolution in Africa-implications for adaptation and management. Hydrological Sciences Journal, 54(4), 781–792. https://doi.org/10.1623/hysj.54.4.781

    Article  Google Scholar 

  • Ennabli, M. (1980). Etude hydrogéologique des aquifères du Nord-Est de la Tunisie pour une gestion intégrée des ressources en eau. Thèse de Doctorat d’Etat. Nice, 570 p.

  • Fisher, R. S., & Mullican, W. F. (1997). Hydrochemical evolution of sodium-sulfate and sodium-chloride groundwater beneath the northern Chihuahuan Desert, Trans-Pecos, Texas, USA. Hydrogeology Journal, 5(2), 4–16. https://doi.org/10.1007/s100400050102

    Article  Google Scholar 

  • Gaaloul, N., Candela, L., Chebil, A., Soussi, A., & Tamoh, K. (2014). Groundwater flow simulation at the Grombalia phreatic aquifer (Cap Bon, Northeastern Tunisia). Desalination and Water Treatment, 52(10-12), 1997–2008. https://doi.org/10.1080/19443994.2013.821026

    Article  CAS  Google Scholar 

  • Garcia, G. M., Hidalgo, M. D. V., & Blesa, M. A. (2001). Geochemistry of groundwater in the alluvial plain of Tucuman province, Argentina. Hydrogeology Journal, 9(6), 597–610. https://doi.org/10.1007/s10040-001-0166-4

    Article  CAS  Google Scholar 

  • Giordano, M. (2009). Global groundwater? Issues and solutions. Annual Review of Environment and Resources, 34(1), 153–178. https://doi.org/10.1146/annurev.environ.030308.100251

    Article  Google Scholar 

  • GWP. (2012). Global water partnership. Water demand. Management: The Mediterranean experience. Technical focus paper ISBN: 978–91–85321-88-9.

  • Hadj Sassi, M., Zouari, H., & Jallouli, C. (2006). Contribution de la gravimétrie et de la sismique réflexion pour une nouvelle interprétation géodynamique des fossés d’effondrement en Tunisie: exemple du fossé de Grombalia. Comptes Rendus Geoscience, 338(11), 751–756. https://doi.org/10.1016/j.crte.2006.07.005

    Article  Google Scholar 

  • Hamza, M. H., Maâlej A., Ajmi, M., Added, A. (2010). Validity of the vulnerability methods DRASTIC and SI applied by GIS technique to the study of diffuse agricultural pollution in two phreatic aquifers of a semi-arid region (Northeast of Tunisia). AQUAmundi-Am01009, 57-64.

  • Journel, A., & Huijbregts, C. J. (1978). Mining geostatistics. New York: Academic Press.

    Google Scholar 

  • Khan, R., & Jhariya, D. C. (2017). Groundwater quality assessment for drinking purpose in Raipur city, Chhattisgarh using water quality index and geographic information system. Journal of the Geological Society of India, 90(1), 69–76. https://doi.org/10.1007/s12594-017-0665-0

    Article  CAS  Google Scholar 

  • Kihumba, A. M., Longo, J. N., & Vanclooster, M. (2016). Modelling nitrate pollution pressure using a multivariate statistical approach: the case of Kinshasa groundwater body, Democratic Republic of Congo. Hydrogeology Journal, 24(2), 425–437. https://doi.org/10.1007/s10040-015-1337-z

    Article  Google Scholar 

  • Koutsoyiannis, D., Kundzewicz, Z. W., Watkins, F., & Gardner, C. (2010). Something old, something new, something red, something blue. Hydrological Sciences Journal, 55(1), 1–3. https://doi.org/10.1080/02626660903525294

    Article  Google Scholar 

  • Machiwal, D., & Jha, M. K. (2015). Identifying sources of groundwater contamination in a hard-rock aquifer system using multivariate statistical analyses and GIS-based geostatistical modeling techniques. Journal of Hydrology: Regional Studies, 4, 80–110.

    Google Scholar 

  • Maduabuchi, C., Faye, S., & Maloszewski, P. (2006). Isotope evidence of paleorecharge and paleoclimate in the deep confined aquifers of the Chad basin, NE Nigeria. Science of the Total Environment, 370(2-3), 467–479. https://doi.org/10.1016/j.scitotenv.2006.08.015

    Article  CAS  Google Scholar 

  • Mann, W. B., Unterweger, M. P., & Coursey, B. M. (1982). Comments on the NBS tritiated-water standards and their use. The International Journal of Applied Radiation and Isotopes, 33(5), 383–386. https://doi.org/10.1016/0020-708X(82)90153-3

    Article  CAS  Google Scholar 

  • McLean, W., Jankowski, J., & Lavitt, N. (2000). Groundwater quality and sustainability in an alluvial aquifer, Australia. Groundwater, past achievements and future challenges (pp. 567–573). Rotterdam: A Balkema.

    Google Scholar 

  • Mengis, M., Schif, S. L., Harris, M., English, M. C., Aravena, R., Elgood, R. J., & Maclean, A. (1999). Multiple geochemical and isotopic approaches for assessing ground water NO3 elimination in a riparian zone. Groundwater, 37(3), 448–457. https://doi.org/10.1111/j.1745-6584.1999.tb01124.x

    Article  CAS  Google Scholar 

  • Ouhamdouch, S., Bahir, M., Carreira, P., Chkir, N., & Goumih, A. (2016). Climate change impact on Hauterivian aquifer of Essaouira basin (Morocco). Larhyss Journal ISSN, 1112-3680(25), 269–283.

    Google Scholar 

  • Paniconi, C., Khlaifi, I., Lecca, G., Agiacomelli, A., Tarhouni, J. (2001). Modeling and analysis of seawater intrusion in the coastal aquifer of eastern cap-bon, Tunisia. Transport in Porous Media 43:3–28. Kluwer Academic Publishers. Printed in the Netherlands.

  • Penna, D., Stenni, B., Wrede, S., Bogaard, T. A., Gobbi, A., Borga, M., Fischer, B. M. C., Bonazza, M., & Charova, Z. (2010). On the reproducibility and repeatability of laser absorption spectroscopy measurements for [delta] 2H and [delta] 18O isotopic analysis. Hydrology and Earth System Sciences, 14(8), 1551–1566. https://doi.org/10.5194/hess-14-1551-2010

    Article  CAS  Google Scholar 

  • Piper, A. M. (1944). A graphic procedure in the geochemical interpretation of water analyses. Transactions, American Geophysical Union, 25(6), 914–923. https://doi.org/10.1029/TR025i006p00914

    Article  Google Scholar 

  • Re, V. (2015). Incorporating the social dimension into hydrogeochemical investigations for rural development: the Bir Al-Nas approach for socio-hydrogeology. Hydrogeology Journal, 23(7), 1293–1304. https://doi.org/10.1007/s10040-015-1284-8

    Article  Google Scholar 

  • Re, V., Sacchi, E., Kammoun, S., Tringali, C., Trabelsi, R., Zouari, K., & Daniele, S. (2017). Integrated socio-hydrogeological approach to tackle nitrate contamination in groundwater resources. The case of Grombalia Basin (Tunisia). Science of the Total Environment, 593–594(2017), 664–676. https://doi.org/10.1016/j.scitotenv.2017.03.151

    Article  Google Scholar 

  • Re, V., Sacchi, E., Mas-Pla, J., Menció, A., & El Amrani, N. (2014). Identifying the effects of human pressure on groundwater quality to support water management strategies in coastal regions: a multi-tracer and statistical approach (Bou-Areg region, Morocco). Science of the Total Environment, 500, 211–223. https://doi.org/10.1016/j.scitotenv.2014.08.115

    Article  Google Scholar 

  • Re, V., & Zuppi, G. M. (2011). Influence of precipitation and deep saline groundwater on the hydrological systems of Mediterranean coastal plains: a general overview. Hydrological Sciences Journal, 56(6), 966–980. https://doi.org/10.1080/02626667.2011.597355

    Article  CAS  Google Scholar 

  • Rozanski, K., Araguás-Araguás, L., & Gonfiantini, R. (1993). Isotopic patterns inmodern global precipitation. Geophysical Monograph, 78, 1–36.

    Google Scholar 

  • Schoeller, H. (1939). Le quaternaire du Golfe ancien de Grombalia. Tunisie Actes Société Linnéenne de Bordeaux, 91, 14–30.

    Google Scholar 

  • Sebei, A., Chaabani, F., Souissi, F., & Abdeljaoued, S. (2004). Hydrologie et qualité des eaux de la nappe de Grombalia (Tunisie nord-orientale). Sécheresse, 15(2), 159–166.

    Google Scholar 

  • Selek, Z., & Yetis, A. D. (2017). Assessment of nitrate contamination in a transnational groundwater basin: a case study in the Ceylanpinar Plain, Turkey. Environment and Earth Science, 76(20), 698. https://doi.org/10.1007/s12665-017-7044-4

    Article  Google Scholar 

  • Siebert, S., Burke, J., Faures, J. M., Frenken, K., Hoogeveen, P. D., Döll, P., & Portmann, F. T. (2010). Groundwater use for irrigation—a global inventory. Hydrology and Earth System Science, 14(10), 1863–1880. https://doi.org/10.5194/hess-14-1863-2010

    Article  Google Scholar 

  • Spalding, R. F., & Exner, M. E. (1993). Occurrence of nitrate in groundwaterea review. Journal of Environmental Quality, 22(3), 392–402. https://doi.org/10.2134/jeq1993.00472425002200030002x

    Article  CAS  Google Scholar 

  • Spruill, T. B., Showers, W. J., & Howe, S. S. (2002). Application of classification-tree methods to identify nitrate sources in ground water. Journal of Environmental Quality, 31(5), 1538–1549. https://doi.org/10.2134/jeq2002.1538

    Article  CAS  Google Scholar 

  • Stigter, T. Y., Dill, A. C., Ribeiro, L., & Reis, E. (2006). Impact of the shift from groundwater to surface water irrigation on aquifer dynamics and hydrochemistry in a semi-arid region in the south of Portugal. Agricultural Water Management, 85(1), 121–132. https://doi.org/10.1016/j.agwat.2006.04.004

    Article  Google Scholar 

  • Subramani, T., Elango, L., & Damodarasamy, S. R. (2005). Groundwater quality and its suitability for drinking and agricultural use in Chithar River Basin, Tamil Nadu, India. Environmental Geology, 47(8), 1099–1110. https://doi.org/10.1007/s00254-005-1243-0

    Article  CAS  Google Scholar 

  • Suthar, S., Bishnoi, P., Singh, S., Mutiyar, P. K., Nema, A. K., & Patil, N. S. (2009). Nitrate contamination in groundwater of some rural areas of Rajasthan, India. Journal of Hazardous Materials, 171(1), 189–199. https://doi.org/10.1016/j.jhazmat.2009.05.111

    Article  CAS  Google Scholar 

  • Taylor, C.B. (1977). Tritium enrichment of environmental waters by electrolysis: development of cathodes exhibiting high isotopic separation and precise measurements and Applications. High Tatras, Czechoslovakia, October 1975, Bratislava, 133–140 pp.

  • Tlili-Zrelli, B., Hamzaoui-Azaza, F., Gueddari, M., & Bouhlila, R. (2013). Geochemistry and quality assessment of groundwater using graphical and multivariate statistical methods. A case study: Grombalia phreatic aquifer (northeastern Tunisia). Arabian Journal of Geosciences, 6(9), 3545–3561. https://doi.org/10.1007/s12517-012-0617-3

    Article  CAS  Google Scholar 

  • Tringali, C., Re, V., Siciliano, G., Chkir, N., Tuci, C., Zouari, K. (2017). Insights and participatory actions driven by a socio-hydrogeological approach for groundwater management: the Grombalia Basin case study (Tunisia). Hydrogeology Journal. doi: https://doi.org/10.1007/s10040-017-1542-z).

  • UNESCO-ISARM. (2004). United Nations Educational, Scientific and Cultural Organization -Internationally Shared Aquifer Resources Management Managing shared aquifer resources in Africa. In: B. Appelgren (Ed.) Paris: UNESCO IHP-VI, Series in Groundwater no 8.

  • Van der Gun, J. (2012). Groundwater and global change: Trends, Opportunities and Challenges. UNESCO Side Publication Series 01. ISBN 978-92-3-001049-2.

  • WHO. (2011). World Health Organization, Guidelines for drinking-water quality, fourth edition. 564p. ISBN: 978 92 4 154815 1.

  • Yuan, L., Zonghe, P., & Tianming, H. (2012). Integrated assessment on groundwater nitrate by unsaturated zone probing and aquifer sampling with environmental tracers. Environmental Pollution, 171, 226–233. https://doi.org/10.1016/j.envpol.2012.07.027

    Article  CAS  Google Scholar 

  • Zghibi, A., Tarhouni, J., & Zouhri, L. (2013). Assessment of seawater intrusion and nitrate contamination on the groundwater quality in the Korba coastal plain of Cap-Bon (North-east of Tunisia). Journal of African Earth Sciences, 87, 1–12. https://doi.org/10.1016/j.jafrearsci.2013.07.009

    Article  CAS  Google Scholar 

  • Zouari, K., Aranyossy, J.F., Mamou, A., & Fontes, J.Ch. (1985). Etude isotopique et géochimique des mouvements et de l’évolution des solutions de la zone aérée des sols sous climat semi-aride (Sud tunisien). In: Stable and radiactive isotopes in the study of the unsaturated soil zone (pp.121–144). IAEA-TECDOC-357, Vienna.

  • Zouari, K., Re, V., Sacchi, E., Trabelsi, R., & Kammoun, S. (2015). The use of nitrate isotopes to assess agricultural and domestic impacts on groundwater quality in rural zones. The example of Grombalia basin (Tunisia). Vienna: International Symposium on Isotope Hydrology: Revisiting Foundations and Exploring Frontiers.

    Google Scholar 

  • Zuppi, G. M. (2008). The groundwater challenge. In C. Clini, I. Musu, & M. L. Gullino (Eds.), Sustainable development and environmental management Experience and case studies. DORDRECHT: Springer.

    Google Scholar 

Download references

Acknowledgements

This research is partially supported by a Marie Curie Fellowship awarded to Dr. Viviana Re within the EU 7th FP for Research and Technological Development (FP7-PEOPLE-2012-IOF n.327287). The authors gratefully acknowledge the contribution of the staff members of the Regional Commissariat for Agricultural Development (CRDA) of Nabeul for their help during fieldwork.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siwar Kammoun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kammoun, S., Trabelsi, R., Re, V. et al. Groundwater quality assessment in semi-arid regions using integrated approaches: the case of Grombalia aquifer (NE Tunisia). Environ Monit Assess 190, 87 (2018). https://doi.org/10.1007/s10661-018-6469-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-018-6469-x

Keywords

Navigation