Skip to main content

Advertisement

Log in

Complexation of DTPA and EDTA with Cd2+: stability constants and thermodynamic parameters at the soil-water interface

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Two alkaline soils collected from the surface horizon (0–15 cm) of two agricultural fields Lakshmikantapur (LKP; 22° 06′ 03″ N and 88° 18′ 19″ E) and Diamond Harbour (DHB; 22° 11′ N and 88° 14′ E) of West Bengal, India were studied to observe the stability of cadmium (Cd) chelate complexes with diethylenetriaminepentaacetatic acid (DTPA) and ethylenediaminetetraacetic acid (EDTA), removing organic matter (OM). The objective of the present study is “determination of the stability constants and the thermodynamic parameters of Cd-DTPA and Cd-EDTA complexes at different pH and temperatures at the soil-water interface”. Complex formation of soil Cd with DTPA and EDTA at the soil-water interface was studied under different ligand-to-metal ratios, pHs and temperatures. Apparent conditional stability constants (log k´) were calculated from the concentrations of Cd chelates and free Cd2+, estimated by solid phase extraction with an ion exchanger. Standard Gibbs energy (ΔG°), standard enthalpy (ΔH°) and standard entropy (ΔS°) of formation were calculated at three different temperatures. The higher stability constants of Cd-DTPA than Cd-EDTA indicated longer persistence of Cd-DTPA at the soil solution interface than Cd-EDTA complex. Increase of ΔG°, ΔH° and ΔS° with progress of temperature revealed that Cd-complex formation was facilitated by temperature. Highly negative ΔG° and positive ΔH° for Cd-complex formation indicated the reaction spontaneous and exothermic. In general, both ligands complexed high percentages of cadmium signalling their role in enhancing remobilization of Cd present in soil and preventing exchange of contaminated Cd from external source with soil mineral matrix; these phenomena may greatly reduce hazard for environment and human health. The result of this study support that DTPA increases solubility and more persistence of Cd in acidic soils within the range of temperature and mole fraction (MF = moles of Cd2+ / sum of the moles of Cd2+ and chelating agent) than that of EDTA due to higher capability of complex formation with Cd2+. Therefore, DTPA enhanced Cd toxicity in acid soils and groundwater. Complex formation in the presence of DTPA at acidic pH decreases with temperature and increases with pH. The higher per cent of Cd complexed in the presence of DTPA revealed that DTPA is a stronger chelating agent than EDTA at acidic pHs. Whereas, the capability of complex formation by EDTA is lower at lower pH but higher at higher pH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abollino, O., Sarzanini, C., Mentasti, E., & Liberatori, A. (1994). Evaluation of stability constants of metal complexes with sulphonated azo-ligands. Talanta, 41, 1107–1112.

    Article  CAS  Google Scholar 

  • Abollino, O., Giacomino, A., Malandrino, M., Mentasti, E., Aceto, M., & Barberis, R. (2006). Assessment of metal availability in a contaminated soil by sequential extraction. Water, Air, & Soil Pollution, 137, 315–338.

    Article  Google Scholar 

  • Ali, H., Khan, E., & Sajad, M. A. (2013). Phytoremediation of heavy metals—concepts and applications. Chemosphere, 91(7), 869–881.

    Article  CAS  Google Scholar 

  • Bolan, N., Mahimairaja, S., Kunhikrishnan, A., & Naidu, R. (2013). Sorption-bioavailability nexus of arsenic and cadmium in variable-charge soils. Journal of Hazardous Materials, 261, 725–732.

    Article  CAS  Google Scholar 

  • Buchko, G. W., Hess, N. J., & Kennedy, M. A. (2000). Cadmium mutagenicity and human nucleotide excision repair protein XPA, CD, EXAFS and 1H/15 N-NMR spectroscopic studies on the zinc(II) and cadmium(II)-associated minimal DNA binding domain (M98-F219). Carcinogenesis, 21, 1051–1057.

    Article  CAS  Google Scholar 

  • Cotton, F. A., Wilkinson, G., & Gaus, P. (2008). Basic inorganic chemistry. New York: Wiley.

    Google Scholar 

  • Duncan, D. B. (1955). Multiple range and multiple F tests. Biometrics, 11, 1–42.

    Article  Google Scholar 

  • Fortin, C., & Campbell, P. G. C. (1998). An ion-exchange technique for free-metal ion measurements (Cd2+, Zn2+): applications to complex aqueous media. International Journal of Environmental and Analytical Chemistry, 72, 173–194.

    Article  CAS  Google Scholar 

  • Fredd, C. N., & Fogler, H. S. (1998). The influence of chelating agents on the kinetics of calcite dissolution. Journal of Colloid and Interface Science, 204, 187–197.

    Article  CAS  Google Scholar 

  • Galvao, L. S., & Vitorello, I. (1998). Role of organic matter in obliterating the effects of iron on spectral reflectance and colour of Brazilian tropical soils. International Journal of Remote Sensing, 19(10), 1969–1979.

    Article  Google Scholar 

  • Gjems, O. (1967). Meddelel fra Det Norske Skogforsoksvesen. No. 81, Bind 21, Vollebekk, Norway.

  • Groenenberg, J. E., Römkens, P. F. A. M., Comans, R. N. J., Luster, J., Pampura, T., Shotbolt, L., Tipping, E., & De Vries, W. (2010). Transfer functions for solid-solution partitioning of cadmium, copper, nickel, lead and zinc in soils: derivation of relationships for free metal ion activities and validation with independent data. European Journal of Soil Science, 61, 58–73.

    Article  CAS  Google Scholar 

  • Jackson, M. L. (1973). Soil chemical analysis. New Delhi: Prentice Hall of India.

    Google Scholar 

  • Jakovljevic, M. D., Kostic, N. M., Stevanovic, D., Blagojevic, S., Wilson, M. J., & Martinovic, L. (1997). Factors influencing the distribution of heavy metals in the alluvial soils of the Velika Morava River valley, Serbia. Applied Geochemistry, 12, 637–642.

    Article  CAS  Google Scholar 

  • Kaiser, K., & Guggenberger, G. (2003). Mineral surfaces and soil organic matter. European Journal of Soil Science, 54, 219–236.

    Article  CAS  Google Scholar 

  • Kaiser, K., & Zech, W. (1996). Defects in estimation of aluminum in humus complexes of podzolic soils by pyrophosphate extraction. Soil Science, 161, 452–458.

    Article  CAS  Google Scholar 

  • Karak, T., Paul, R.K., Das, S., Das, D.K., Dutta, A.K., & Boruah, R.K. (2015). Fate of cadmium at soil-solution interface: a thermodynamic study as influenced by varying pH at South 24 Paraganas, West Bengal, India. Environmental Monitoring and Assessment (in press; DOI:10.1007/s10661-015-4923-6).

  • Kolonel, L. N. (1976). Association of cadmium with renal cancer. Cancer, 37(4), 1782–1787.

    Article  CAS  Google Scholar 

  • Korkanç, S. Y., & Korkanç, M. (2016). Physical and chemical degradation of grassland soils in semi-arid regions: a case from central Anatolia, Turkey. Journal of African Earth Sciences, 124, 1–11.

    Article  Google Scholar 

  • Lavkulich, L. M., & Wiens, J. H. (1970). Comparison of organic matter destruction by hydrogen peroxide and sodium hypochlorite and its effects on selected mineral constituents. Soil Science Society of America Proceeding, 34, 755–758.

    Article  CAS  Google Scholar 

  • Li, M., Lou, Z., Wang, Y., Liu, Q., Zhang, Y., Zhou, J., & Qian, G. (2015). Alkali and alkaline earth metallic (AAEM) species leaching and Cu(II) sorption by biochar. Chemosphere, 119, 778–785.

    Article  CAS  Google Scholar 

  • Lindsay, W. L., & Norvell, W. A. (1978). Development of DTPA soil test for zinc, iron, manganese, and copper. Journal Soil Science Society of America, 42, 421–428.

    Article  CAS  Google Scholar 

  • Lumsdon, D. G. (2004). Partitioning of organic carbon, aluminium and cadmium between solid and solution in soils: application of a mineral-humic particle additivity model. European Journal of Soil Science, 55, 271–285.

    Article  CAS  Google Scholar 

  • Martell, A. E., & Calvin, M. (1956). Chemistry of metal chelate compounds. NJ: Prentice-Hall.

    Google Scholar 

  • Martell, A. L., & Smith, R. M. (1974). Critical stability constants. New York: Plenum.

    Google Scholar 

  • Meers, E., Tack, F. M. G., & Verloo, M. G. (2008). Degradability of ethylenediaminedisuccinic acid (EDDS) in metal contaminated soils: implications for its use soil remediation. Chemosphere, 70(3), 358–363.

    Article  CAS  Google Scholar 

  • Mehmood, F., Rashid, A., Mahmood, T., & Dawson, L. (2013). Effect of DTPA on Cd solubility in soil—accumulation and subsequent toxicity to lettuce. Chemosphere, 90(6), 1805–1810.

    Article  CAS  Google Scholar 

  • Mehra, O. P., & Jackson, M. L. (2013). Iron oxide removal from soils by a dithionite-citrate system buffered with sodium bicarbonate. In A. Swineford (Ed.), Clays and clay minerals: proceedings of the Seventh National Conference (pp. 317–327). Philadelphia: Elsevier Inc..

    Chapter  Google Scholar 

  • Morel, M. M., & Hering, J. G. (2004). Principles and applications of aquatic chemistry. New York: Wiley.

    Google Scholar 

  • Naidu, R., Bolan, N. S., Kookana, R. S., & Tiller, K. G. (1994). Ionic-strength and pH effects on the sorption of cadmium and the surface charge of soils. European Journal of Soil Science, 45, 419–429.

    Article  CAS  Google Scholar 

  • Naidu, R., Kookana, R. S., Sumner, M. E., Harter, R. D., & Tiller, K. G. (1997). Cadmium sorption and transport in variable charge soils, a review. Journal of Environmental Quality, 26, 602–617.

    Article  CAS  Google Scholar 

  • Nelson, D. W., & Sommers, L. E. (1996). Total carbon, organic carbon and organic matter. In D. L. Sparks (Ed.), Methods of soil analysis, part 3. Chemical methods, SSSA Book Ser. 5 (pp. 961–1010). Madison, WI: SSSA.

    Google Scholar 

  • Ochoa-Loza, F., Artiola, J. F., & Maier, R. M. (2001). Stability constants for the complexation of various metals with a rhamnolipid biosurfactant. Journal of Environmental Quality, 30, 479–485.

    Article  CAS  Google Scholar 

  • Papassiopi, N., Pinakidou, F., Katsikini, M., Antipas, G. S. E., Christou, C., Xenidis, A., & Paloura, E. C. (2014). A XAFS study of plain and composite iron(III) and chromium(III) hydroxides. Chemosphere, 111, 169–176.

    Article  CAS  Google Scholar 

  • Rhoades, J. D. (1982). Cation exchange capacity. In A. L. Page (Ed.), Methods of soil analysis—part 2 Agron. Monogr. 9 (pp. 149–158). Madison, WI: ASA and SSSA.

    Google Scholar 

  • Rueda-Holgado, F., Calvo-Blázquez, L., Cereceda-Balic, F., & Pinilla-Gil, E. (2016). Temporal and spatial variation of trace elements in atmospheric deposition around the industrial area of Puchuncaví-Ventanas (Chile) and its influence on exceedances of lead and cadmium critical loads in soils. Chemosphere, 144, 1788–1796.

    Article  CAS  Google Scholar 

  • Sebastian, A., & Prasad, M. N. V. (2014). Vertisol prevent cadmium accumulation in rice: analysis by ecophysiological toxicity markers. Chemosphere, 108, 85–92.

    Article  CAS  Google Scholar 

  • Sillanpää, M., Vičkačkait, V., Niinistö, L., & Sihvonen, M. (1997). Distribution and transportation of ethylenediaminetetraacetic acid and diethylenetriaminepentaacetic acid in lake water and sediment. Chemosphere, 35(12), 2797–2805.

    Article  Google Scholar 

  • Sykora, V., Pitter, P., Bittnerova, I., & Lederer, T. (2001). Biodegradability of ethylenediamine-based complexing agents. Water Research, 35, 2010–2016.

    Article  CAS  Google Scholar 

  • van Raij, B., & Peech, M. (1972). Electrochemical properties of some oxisols and alfisols of the tropics. Soil Science Society of America Proceeding, 36, 587–593.

    Article  Google Scholar 

  • Visconti, F., De Paz, J. M., & Rubio, J. L. (2010). Calcite and gypsum solubility products in water-saturated salt-affected soil samples at 25 °C and at least up to 14 dS m−1. European Journal of Soil Science, 61, 255–270.

    Article  CAS  Google Scholar 

  • Wilkinson, G. (2009). Comprehensive coordination chemistry. Oxford: Pergamon.

    Google Scholar 

  • Zhao, X., Jiang, T., & Du, B. (2014). Effect of organic matter and calcium carbonate on behaviors of cadmium adsorption–desorption on/from purple paddy soils. Chemosphere, 99, 41–48.

    Article  CAS  Google Scholar 

  • Zheng, S., Chen, C., Li, Y., Li, S., & Liang, J. (2013). Characterizing the release of cadmium from 13 purple soils by batch leaching tests. Chemosphere, 91(11), 1502–1507.

    Article  CAS  Google Scholar 

  • Zornoza, R., Moreno-Barriga, F., Acosta, J. A., Muñoz, M. A., & Faz, A. (2016). Stability, nutrient availability and hydrophobicity of biochars derived from manure, crop residues, and municipal solid waste for their use as soil amendments. Chemosphere, 144, 122–130.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thankfully acknowledge the financial support received from the Department of Science and Technology (DST), Ministry of Science and Technology, Govt. of India (DST’s sanction order no.: DST/INT/South Africa/P-11/2014). We also acknowledge the partial financial support provided by National Tea Research Foundation ,Tea Board, Govt. of India (grant number: 151/2011) for procuring the AAS. Grateful thanks are due to Prof. Ornella Abollino, Department of Analytical Chemistry, University of Torino, Torino, Italy for her valuable suggestion in preparing this manuscript. Finally, we convey our thanks to two anonymous reviewers for their critical and constructive suggestions that help us a lot to improve the quality of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tanmoy Karak or Ranjit Kumar Paul.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 77 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karak, T., Paul, R.K., Das, D.K. et al. Complexation of DTPA and EDTA with Cd2+: stability constants and thermodynamic parameters at the soil-water interface. Environ Monit Assess 188, 670 (2016). https://doi.org/10.1007/s10661-016-5685-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5685-5

Keywords

Navigation