Skip to main content

Advertisement

Log in

Phosphorus source—sink relationships of stream sediments in the Rathbun Lake watershed in southern Iowa, USA

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The surface waters of Rathbun Lake watershed in southern Iowa are impacted by agricultural sources of sediments and nutrients, including phosphorus (P). Because stream sediments often play an important role in regulating P concentrations in stream water, we investigated sediment–water column P relationships in four creeks within the watershed and then evaluated the relationship between sediment properties and indicators of the risk of P loss. Based on Mehlich-3-extractable P (17 to 68 mg kg−1) and degree of P saturation (2 to 12 %), stream bank and bed sediments at the four sites were unlikely to serve as major sources of P. However, equilibrium P concentrations, which ranged from 0.02 to 0.12 mg L−1, indicated that bed sediments could release P to the water column depending on dissolved P (DP) concentrations in the stream water and the time of year. The likelihood of P desorption from the sediments increased with increasing pH (r = 0.92, p < 0.01) and sand content (r = 0.78, p < 0.05), but decreased with clay content (r = −0.72, p < 0.05) and iron (Fe) (r = −0.93, p < 0.001) associated with organic matter. From these results, we speculate that changes in land use within the riparian areas may, at least initially, have little effect on P concentrations in the streams. Low concentrations of DP relative to total P (TP) in these streams, however, suggest that P loads to Rathbun Lake can be reduced if P inputs from eroded bank sediments are controlled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alexander, R. B., Smith, R. A., Schwarz, G. E., Boyer, E. W., Nolan, J. V., & Brakebill, J. W. (2008). Differences in phosphorus and nitrogen delivery to the Gulf of Mexico from the Mississippi River Basin. Environmental Science and Technology, 42, 822–830.

    Article  CAS  Google Scholar 

  • APHA. (2005). Standard methods for the examination of water and wastewater (21st ed.). Washington: American Public Health Association.

    Google Scholar 

  • Balmer, M. (2015). Rathbun Lake and watershed 2014 monitoring summary. http://rathbunlandwateralliance.blogspot.com/p/technical-reports-maps.html. Accessed 15 June 2016.

    Google Scholar 

  • Bear, D. A., Russell, J. R., Tufekcioglu, M., Isenhart, T. M., Morrical, D. G., & Kovar, J. L. (2012). Stocking rate and riparian vegetation effects on physical characteristics of riparian zones of Midwestern pastures. Range Ecology and Management, 65, 119–128.

    Article  Google Scholar 

  • Becher, K. D., Kalkhoff, S. J., Schnoebelen, D. J., Barnes, K. K., & Miller, V. E. (2001). Water-quality assessment of the eastern Iowa basins—nitrogen, phosphorus, suspended sediment, and organic carbon in surface water, 1996–98 (Report 01–4175, U.S. Geological Survey). http://pubs.usgs.gov/wri/wri014175/pdf/wri01-4175.pdf. Accessed 25 June 2016.

    Google Scholar 

  • Braster, M., Jacobson, T., & Sitzmann, V. (2001). Assessment and management strategies for the Rathbun Lake watershed. http://www.iowadnr.gov/Portals/idnr/uploads/water/watershed/files/rathbunwmp1.pdf. Accessed 15 June 2016.

    Google Scholar 

  • Carpenter, S. R., Caraco, N. F., Correll, D. L., Howarth, R. W., Sharpley, A. N., & Smith, V. H. (1998). Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological Applications, 8, 559–568.

    Article  Google Scholar 

  • Correll, D. L. (1998). The role of phosphorus in the eutrophication of receiving waters: a review. Journal of Environmental Quality, 27, 261–266.

    Article  CAS  Google Scholar 

  • Crosland, A. R., Zhao, F. J., McGrath, S. P., & Lane, P. W. (1995). Comparison of aqua regia digestion with sodium carbonate fusion for the determination of total phosphorus in soils by inductively coupled plasma atomic emission spectroscopy ICP. Communications in Soil Science and Plant Analysis, 26, 1357–1368.

    Article  CAS  Google Scholar 

  • Djodjic, F., Börling, K., & Bergström, L. (2004). Phosphorus leaching in relation to soil type and soil phosphorus content. Journal of Environmental Quality, 33, 678–684.

    Article  CAS  Google Scholar 

  • Downing, J. A., & Kopaska, J. (2000). Diagnostic study of Rock Creek Lake and its watershed: recommendations for remediation. Des Moines: Iowa Department of Natural Resources.

    Google Scholar 

  • Ekka, S. A., Haggard, B. E., Matlock, M. D., & Chaubey, I. (2006). Dissolved phosphorus concentrations and sediment interactions in effluent-dominated Ozark streams. Ecological Engineering, 26, 375–391.

    Article  Google Scholar 

  • Essington, M. E. (2003). Soil and water chemistry: an integrative approach. Boca Raton: CRC Press.

    Google Scholar 

  • Gee, G. W., & Bauder, J. W. (1986). Particle-size analysis. In A. Klute (Ed.), Methods of soil analysis, part 1, 2 nd edition., Agronomy Monograph 9 (pp. 383–411). Madison: ASA and SSSA.

    Google Scholar 

  • Griffith, G. E., Omernik, J. M., Wilton, T. F., & Pierson, S. M. (1994). Ecoregions and subregions of Iowa—a framework for water quality assessment and management. Journal of the Iowa Academy of Sciences, 101, 5–13.

    Google Scholar 

  • Haggard, B. E., & Sharpley, A. N. (2007). Phosphorus transport in stream: processes and modeling considerations. In D. Radcliffe & M. Cabrera (Eds.), Modeling phosphorus in the environment (pp. 105–130). Boca Raton: CRC Press.

    Google Scholar 

  • Haggard, B. E., Stanley, E. H., & Hyler, R. (1999). Sediment-phosphorus relationships in three north central Oklahoma streams. Transactions of American Society of Agricultural Engineers, 42, 1709–1714.

    Article  CAS  Google Scholar 

  • Haggard, B. E., Ekka, S. A., Matlock, M. D., & Chaubey, I. (2004). Phosphate equilibrium between stream sediments and water: potential effect of chemical amendments. Transactions of American Society of Agricultural Engineers, 47, 1113–1118.

    Article  CAS  Google Scholar 

  • Haggard, B. E., Smith, D. R., & Brye, K. R. (2007). Variations in stream water and sediment phosphorus among select Ozark catchments. Journal of Environmental Quality, 36, 1725–1734.

    Article  CAS  Google Scholar 

  • Hatfield, J. L., McMullen, L. D., & Jones, C. S. (2009). Nitrate-nitrogen patterns in the Raccoon River Basin related to agricultural practices. Journal of Soil and Water Conservation, 64, 190–199.

    Article  Google Scholar 

  • Hongthanat, N., Kovar, J. L., & Thompson, M. L. (2011). Sorption indices to estimate risk of soil phosphorus loss in the Rathbun Lake watershed, Iowa. Soil Science, 176, 237–244.

    CAS  Google Scholar 

  • House, W. A., & Denison, F. H. (2000). Factors influencing the measurement of equilibrium phosphorus concentrations in river sediments. Water Research, 34, 1187–1200.

    Article  CAS  Google Scholar 

  • Ige, D. V., Akinremi, O. O., & Flaten, D. N. (2005). Environmental index for estimating the risk of phosphorus loss in calcareous soils of Manitoba. Journal of Environmental Quality, 34, 1944–1951.

    Article  CAS  Google Scholar 

  • Iowa Department of Natural Resources (IDNR). (2015a). Iowa’s Section 303(d) impaired waters listings. http://www.iowadnr.gov/Environment/WaterQuality/WaterMonitoring/ImpairedWaters.aspx. Accessed 15 June 2016.

    Google Scholar 

  • Iowa Department of Natural Resources (IDNR). (2015b). Iowa’s STORET/WQX database. https://programs.iowadnr.gov/iastoret/Default.aspx. Accessed 15 June 2016.

    Google Scholar 

  • Iowa Department of Natural Resources (IDNR). (2015c). Stream nutrient criteria to protect aquatic life. http://www.iowadnr.gov/Environmental-Protection/Water-Quality/Water-Quality-Standards Accessed 15 June 2016.

    Google Scholar 

  • Jacobson, L. M., David, M. B., & Drinkwater, L. E. (2011). A spatial analysis of phosphorus in the Mississippi River basin. Journal of Environmental Quality, 40, 931–941.

    Article  CAS  Google Scholar 

  • Jarvie, H. P., Jürgens, M. D., Williams, R. J., Neal, C., Davies, J. J. L., Barrett, C., & White, J. (2005). Role of river bed sediments as sources and sinks of phosphorus across two major eutrophic UK river basins: the Hampshire Avon and Herefordshire Wye. Journal of Hydrology, 304, 51–74.

    Article  CAS  Google Scholar 

  • Jarvie, H. P., Sharpley, A. N., Withers, P. J. A., Scott, J. T., Haggard, B. E., & Neal, C. (2013). Phosphorus mitigation to control river eutrophication: murky waters, inconvenient truths and ‘post-normal’ science. Journal of Environmental Quality, 42, 295–304.

    Article  CAS  Google Scholar 

  • Jaynes, D. B., Hatfield, J. L., & Meek, D. W. (1999). Water quality in Walnut Creek watershed: herbicides and nitrate in surface waters. Journal of Environmental Quality, 28, 45–59.

    Article  CAS  Google Scholar 

  • Kleinman, P. J. A., & Sharpley, A. N. (2002). Estimating phosphorus sorption saturation from Mehlich-3 data. Communications in Soil Science and Plant Analysis, 33, 1825–1839.

    Article  CAS  Google Scholar 

  • Koski-Vähälä, J., & Hartikainen, H. (2001). Assessment of the risk of phosphorus loading due to resuspended sediment. Journal of Environmental Quality, 30, 960–966.

    Article  Google Scholar 

  • Laubel, A., Kronvang, B., Hald, A. B., & Jensen, C. (2003). Hydro-morphological and biological factors influencing sediment and phosphorus loss via bank erosion in small lowland rural streams in Denmark. Hydrologic Processes, 17, 3443–3463.

    Article  Google Scholar 

  • Loeppert, R. L., & Inskeep, W. P. (1996). Iron. In D. L. Sparks (Ed.), Methods of soil analysis, part 3, SSSA book series 5 (pp. 639–664). Madison: ASA and SSSA.

    Google Scholar 

  • McDaniel, M. D., David, M. B., & Royer, T. V. (2009). Relationships between benthic sediments and water column phosphorus in Illinois streams. Journal of Environmental Quality, 38, 607–617.

    Article  CAS  Google Scholar 

  • McDowell, R. W., & Sharpley, A. N. (2001). A comparison of fluvial sediment phosphorus (P) chemistry in relation to location and potential to influence stream P concentrations. Aquatic Geochemistry, 7, 255–265.

    Article  CAS  Google Scholar 

  • McDowell, R. W., Sharpley, A. N., & Folmar, G. (2003). Modification of phosphorus export from an eastern USA catchment by fluvial sediment and phosphorus inputs. Agriculture, Ecosystems and Environment, 99, 187–199.

    Article  CAS  Google Scholar 

  • Mehlich, A. (1984). Mehlich 3 soil extractant: a modification of Mehlich 2 extractant. Communications in Soil Science and Plant Analysis, 15, 1409–1416.

    Article  CAS  Google Scholar 

  • Murphy, J., & Riley, J. R. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27, 31–36.

    Article  CAS  Google Scholar 

  • Nair, V. D., Portier, K. M., Graetz, D. A., & Walker, M. L. (2004). An environmental threshold for degree of phosphorus saturation in sandy soils. Journal of Environmental Quality, 33, 107–113.

    Article  CAS  Google Scholar 

  • Nellesen, S. L., Kovar, J. L., Haan, M. M., & Russell, J. R. (2011). Grazing management effects on stream bank erosion and phosphorus delivery to a pasture stream. Canadian Journal of Soil Science, 91, 385–395.

    Article  Google Scholar 

  • Nelson, D. W., & Sommers, L. E. (1982). Total carbon, organic carbon, and organic matter. In A. L. Page (Ed.), Methods of soil analysis, part 2, 2 nd edition, agronomy monograph 9 (pp. 539–580). Madison: ASA and SSSA.

    Google Scholar 

  • Pant, H. K., & Reddy, K. R. (2001). Phosphorus sorption characteristics of estuarine sediments under different redox conditions. Journal of Environmental Quality, 30, 1474–1480.

    Article  CAS  Google Scholar 

  • Patrick, W. H., & Khalid, R. A. (1974). Phosphate release and sorption by soils and sediments: effect of aerobic and anaerobic conditions. Science, 186, 53–55.

    Article  CAS  Google Scholar 

  • Pierzynski, G. M., Sims, J. T., & Vance, G. F. (2005). Soils and environmental quality (3rd ed.). Boca Raton: Taylor and Francis.

    Google Scholar 

  • Pote, D. H., & Daniel, T. C. (2009). Total phosphorus and total dissolved phosphorus in water samples. In J. L. Kovar & G. M. Pierzynski (Eds.), Methods of phosphorus analysis for soils, sediments, residuals, and waters, 2 nd edition (Southern Cooperative Series Bulletin 408, pp. 112–116). Blacksburg: Virginia Polytechnic University.

    Google Scholar 

  • Reddy, K. R., & DeLaune, R. D. (2008). Biogeochemistry of wetlands: science and applications. Boca Raton: CRC Press.

    Book  Google Scholar 

  • Reddy, K. R., O’Connor, G. A., & Gale, P. M. (1998). Phosphorus sorption capacities of wetland soils and stream sediments impacted by dairy effluent. Journal of Environmental Quality, 27, 438–447.

    Article  CAS  Google Scholar 

  • SAS Institute. (2003). SAS 9.1 for Windows, Version 9.1.. Cary: SAS Institute, Inc.

    Google Scholar 

  • Schilling, K. E., Isenhart, T. M., Palmer, J. A., Wolter, C. F., & Spooner, J. (2011). Impacts of land-cover change on suspended sediment transport in two agricultural watersheds. Journal of American Water Resources Association, 47, 672–686.

    Article  Google Scholar 

  • Schoumans, O. F. (2009). Determination of the degree of phosphate saturation in noncalcareous soils. In J. L. Kovar & G. M. Pierzynski (Eds.), Methods of phosphorus analysis for soils, sediments, residuals, and waters, 2 nd edition (Southern Cooperative Series Bulletin 408, pp. 29–32). Blacksburg: Virginia Polytechnic University.

    Google Scholar 

  • Sharpley, A. N., Daniel, T., Sims, T., Lemunyon, J., Stevens, R., & Parry, R. (2003). USDA-ARS Report 149. Washington: U.S. Government Printing Office. Agricultural phosphorus and eutrophication, 2nd edition.

    Google Scholar 

  • Sharpley, A., Jarvie, H. P., Buda, A., May, L., Spears, B., & Kleinman, P. (2013). Phosphorus legacy: Overcoming the effects of past management practices to mitigate future water quality impairment. Journal of Environmental Quality, 42, 1308–1326.

    Article  CAS  Google Scholar 

  • Sims, J. T., Maguire, R. O., Leytem, A. B., Gartley, K. L., & Pautler, M. C. (2002). Evaluation of Mehlich 3 as an agri-environmental soil phosphorus test for the Mid-Atlantic United States of America. Soil Science Society of America Journal, 66, 2016–2032.

    Article  CAS  Google Scholar 

  • Taylor, A. W., & Kunishi, H. M. (1971). Phosphate equilibria on stream sediment and soil in a watershed draining an agricultural region. Journal of Agriculture and Food Chemistry, 19, 827–831.

    Article  Google Scholar 

  • Tomer, M. D., Moorman, T. B., & Rossi, C. G. (2008). Assessment of the Iowa River’s South Fork watershed: part 1. Water quality. Journal of Soil and Water Conservation, 63(6), 360–370.

    Article  CAS  Google Scholar 

  • Tomer, M. D., Wilson, C. G., Moorman, T. B., Cole, K. J., Heer, D., & Isenhart, T. M. (2010). Source-pathway separation of multiple contaminants during a rainfall-runoff event in an artificially drained agricultural watershed. Journal of Environmental Quality, 39, 882–895.

    Article  CAS  Google Scholar 

  • Tufekcioglu, M., Schultz, R. C., Isenhart, T. M., Russell, J. R., Kovar, J. L., & Bear, D. A. (2012). Stream bank erosion as a source of sediment and phosphorus in grazed pastures of the Rathbun Lake Watershed in southern Iowa, USA. Journal of Soil and Water Conservation, 67, 545–555.

    Article  Google Scholar 

  • U.S. Army Corps of Engineers (USACE). (2007). 2006 annual water quality program report—Kansas city district. Kansas City: USACE.

    Google Scholar 

  • U.S. Environmental Protection Agency (USEPA). (2003). Strategy for water quality standards and criteria: Setting priorities to strengthen the foundation for protecting and restoring the nation’s waters, EPA-823-R-03-010. Washington: USEPA.

  • Zaimes, G. N., Schultz, R. C., & Isenhart, T. M. (2004). Stream bank erosion adjacent to riparian forest buffers, row-crop fields, and continuously-grazed pastures along Bear Creek in central Iowa. Journal of Soil and Water Conservation, 59, 19–27.

    Google Scholar 

  • Zaimes, G. N., Schultz, R. C., & Isenhart, T. M. (2008). Streambank soil and phosphorus losses under different riparian land-uses in Iowa. Journal of American Water Resources Association, 44, 935–947.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Douglas Bear, Mustafa Tufekcioglu, Jay Berkey, and Teresita Chua for technical support. We also thank the USDA Cooperative State Research, Education, and Extension Service 406 Program and the Leopold Center for Sustainable Agriculture at Iowa State University for providing financial support. Mention of trade names does not imply recommendation or endorsement by Iowa State University or the USDA Agricultural Research Service.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John L. Kovar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hongthanat, N., Kovar, J.L., Thompson, M.L. et al. Phosphorus source—sink relationships of stream sediments in the Rathbun Lake watershed in southern Iowa, USA. Environ Monit Assess 188, 453 (2016). https://doi.org/10.1007/s10661-016-5437-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5437-6

Keywords

Navigation