Skip to main content
Log in

Modelling the presence and identifying the determinant factors of dominant macroinvertebrate taxa in a karst river

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Modelling the macroinvertebrate community is important for evaluating the status of aquatic ecosystem health. Alternative to physical-based approaches, this study proposed two data-driven methods, support vector machine (SVM) and artificial neural network (ANN), to model the presence of macroinvertebrate species in rivers based on abiotic features. A famous karst river, Lijiang River, in Southwest China was selected as the study case. A total of 300 records containing data on 11 physicochemical parameters were collected from the upstream, midstream and downstream reaches of the river over a 2-year period (2009–2010) and were used for model construction and verification. Ten dominant macroinvertebrate taxa in the study area were modelled. In addition, the performance of the two methods was compared, and the relative importance of the independent variables was identified. The obtained results mapped abiotic factors to the species presence and could be used in combination with a two-dimensional hydro-environmental model to assess the impacts of flow regulation on macroinvertebrate dynamics. Furthermore, the SVM model performed slightly better than the ANN model in the studied case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adriaenssens, V., Goethals, P. L. M., & De Pauw, N. (2006). Fuzzy knowledge-based models for prediction of Asellus and Gammarus in watercourses in Flanders (Belgium). Ecological Modelling, 195, 3–10.

    Article  Google Scholar 

  • Ambelu, A., Lock, K., & Goethals, P. (2010). Comparison of modelling techniques to predict macroinvertebrate community composition in rivers of Ethiopia. Ecological Informatics, 5, 147–152.

    Article  Google Scholar 

  • Analia, C. P., Carolina, O., Mariana, T., & Alberto, R. C. (2006). Response of the zoobenthos community along the dispersion plume of a highly polluted stream in the receiving waters of a large river (Rio de la Plata, Argentina). Hydrobiologia, 568, 1–14.

    Google Scholar 

  • Arimoro, F. O. (2009). Impact of rubber effluent discharges on the water quality and macroinvertebrate community assemblages in a forest stream in the Niger Delta. Chemosphere, 77(3), 440–449.

    Article  CAS  Google Scholar 

  • Baasch, D. M., Tyre, A. J., Millspaugh, J. J., Hygnstrom, S. E., & Vercauteren, K. C. (2010). An evaluation of three statistical methods used to model resource selection. Ecological Modelling, 221, 565–574.

    Article  Google Scholar 

  • Beauger, A., Lair, N., Reyes-Marchant, P., & Peiry, J. L. (2006). The distribution of macroinvertebrate assemblages in a reach of the River Allier (France), in relation to riverbed characteristics. Hydrobiologia, 571, 63–76.

    Article  Google Scholar 

  • Bonada, N., Rieradevall, M., Prat, N., & Resh, V. H. (2006). Benthic macroinvertebrate assemblages and macrohabitat connectivity in Mediterranean climate streams of northern California. Journal of the North American Benthological Society, 25, 32–43.

    Article  Google Scholar 

  • Byvatov, E., Fechner, U., Sadowski, J., & Schneider, G. (2003). Comparison of support vector machine and artificial neural network systems for drug/nondrug classification. Journal of Chemical Information and Computer Sciences, 43, 1882–1889.

    Article  CAS  Google Scholar 

  • Cai, D. S., & Ma, Z. L. (2008). Main ecological problems in Lijiang River watershed. Journal of Guangxi Normal University (Nature Science Edition), 26, 110–112.

    Google Scholar 

  • Chen, Q., Yang, Q., & Lin, Y. (2011). Development and application of a hybrid model to analyze spatial distribution of macroinvertebrates under flow regulation in the Lijiang River. Ecological Informatics, 6, 407–413.

    Article  Google Scholar 

  • Chen, Q., Yang, Q., Li, R., & Ma, J. (2013). Spring micro-distribution of macroinvertebrate in relation to hydro-environmental factors in the Lijiang River, China. Journal of Hydro-Environment Research, 7, 103–112.

    Article  Google Scholar 

  • Chon, T.-S., Park, Y. S., Kwak, I.-S., & Cha, E. Y. (2003). Non-linear approach to grouping, dynamics and organizational informatics of benthic macroinvertebrate communities in stream by artificial neural networks. In F. Recknagel (Ed.), Ecological informatics. Berlin: Springer.

    Google Scholar 

  • Cortes, R. M. V., Ferreira, M. T., Oliveira, S. V., & Oliveira, D. (2002). Macroinvertebrate community structure in a regulated river segment with different flow conditions. River Research and Applications, 18, 367–382.

    Article  Google Scholar 

  • Cristianini, N., & Scholkopf, B. (2002). Support vector machines and kernel methods: the new generation of learning machines. AI Magazine, 23, 31–41.

    Google Scholar 

  • D’Heygere, T., Goethals, P., & De Pauw, N. (2003). Use of genetic algorithms to select input variables in decision tree models for the prediction of benthic macroinvertebrates. Ecological Modelling, 160(3), 291–300.

    Article  Google Scholar 

  • Dakou, E., D’heygere, T., Dedecker, A. P., Goethals, P. L. M., Lazaridou-Dimitriadou, M., & De Pauw, N. (2007). Decision tree models for prediction of macroinvertebrate taxa in the River Axios (Northern Greece). Aquatic Ecology, 41, 399–411.

    Article  Google Scholar 

  • Dangelo, D. J., Howard, L. M., Meyer, J. L., Gregory, S. V., & Ashkenas, L. R. (1995). Ecological uses for genetic algorithms: predicting fish distributions in complex physical habitats. Canadian Journal of Fisheries and Aquatic Sciences, 52, 1893–1908.

    Article  Google Scholar 

  • Dedecker, A. P., Goethals, P. L. M., & De Pauw, N. (2002). Comparison of artificial neural network (ANN) model development methods for prediction of macroinvertebrate communities in the Zwalm River Basin in Flanders, Belgium. The Scientific World Journal, 2, 96–104.

    Article  Google Scholar 

  • Dedecker, A. P., Goethals, P. L. M., Gabriels, W., & De Pauw, N. (2004). Optimization of artificial neural network (ANN) model design for prediction of macroinvertebrates in the Zwalm River Basin (Flanders, Belgium). Ecological Modelling, 174, 161–173.

    Article  CAS  Google Scholar 

  • Dedecker, A. P., Goethals, P. L. M., D’Heygere, T., Gevrey, M., Lek, S., & De Pauw, N. (2005). Application of artificial neural network models to analyse the relationships between Gammarus pulex L. (Crustacea, Amphipoda) and river characteristics. Environmental Monitoring and Assessment, 111, 223–241.

    Article  CAS  Google Scholar 

  • Dewson, Z. S., James, A. B. W., & Death, R. G. (2007). Invertebrate responses to short-term water abstraction in small New Zealand streams. Freshwater Biology, 52, 357–369.

    Article  CAS  Google Scholar 

  • Duan, X., Wang, Z., & Tian, S. (2008). Effect of streambed substrate on macroinvertebrate biodiversity. Frontiers of Environmental Science & Engineering in China, 2, 122–128.

    Article  Google Scholar 

  • Duan, X., Wang, Z., & Xu, M. (2010). Benthic macroinvertebrate and application in the assessment of stream ecology. China: Tsinghua University Press.

    Google Scholar 

  • Dunbar, M. J., Pedersen, M. L., Cadman, D., Extence, C., Waddingham, J., Chadd, R., & Larsen, S. E. (2010). River discharge and local-scale physical habitat influence macroinvertebrate LIFE scores. Freshwater Biology, 55, 226–242.

    Article  Google Scholar 

  • Fielding, A. H., & Bell, J. F. (1997). A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation, 24, 38–49.

    Article  Google Scholar 

  • Fletcher, D., & Goss, E. (1993). Forecasting with neural networks: an application using bankruptcy data. Information Management, 24, 159–167.

    Article  Google Scholar 

  • Gabriels, W., Goethals, P. L. M., Dedecker, A. P., Lek, S., & De Pauw, N. (2007). Analysis of macrobenthic communities in Flanders, Belgium, using a stepwise input variable selection procedure with artificial neural networks. Aquatic Ecology, 41, 427–441.

    Article  CAS  Google Scholar 

  • Gabriels, W., Lock, K., de Pauw, N., & Goethals, P. (2010). Multimetric Macroinvertebrate Index Flanders (MMIF) for biological assessment of rivers and lakes in Flanders (Belgium). Limnologica, 40(3), 199–207.

    Article  Google Scholar 

  • Gevrey, M., Dimopoulos, L., & Lek, S. (2003). Review and comparison of methods to study the contribution of variables in artificial neural network models. Ecological Modelling, 160, 249–264.

    Article  Google Scholar 

  • Gunn, S.T. (1998). Support vector machine for classification and regression. ISIS Report, Image Speech & Intelligent System Groups, University of Southampton.

  • Guo, Q. H., Kelly, M., & Graham, C. H. (2005). Support vector machines for predicting distribution of sudden oak death in California. Ecological Modelling, 182, 75–90.

    Article  Google Scholar 

  • Gutierrez-Estrada, J. C., & Bilton, D. T. (2010). A heuristic approach to predicting water beetle diversity in temporary and fluctuating waters. Ecological Modelling, 221, 1451–1462.

    Article  CAS  Google Scholar 

  • Hoang, T. H., Lock, K., Mouton, A., & Goethals, P. L. M. (2010). Application of classification trees and support vector machines to model the presence of macroinvertebrates in rivers in Vietnam. Ecological Informatics, 5, 140–146.

    Article  Google Scholar 

  • Hornik Maxwell, K., & White, H. (1989). Multilayer feedforward networks are universal approximators. Neural Networks, 2, 359–366.

    Article  Google Scholar 

  • James, A. B. W., & Suren, A. M. (2009). The response of invertebrates to a gradient of flow reduction—an instream channel study in a New Zealand lowland river. Freshwater Biology, 54, 2225–2242.

    Article  Google Scholar 

  • Jowett, I. G., Richardson, J., Biggs, B. J. F., Hickey, C. W., & Quinn, J. M. (1991). Microhabitat preferences of benthic invertebrates and the development of generalized Deleatidium spp. habitat suitability curves, applied to four New-Zealand rivers. New Zealand Journal of Marine and Freshwater Research, 25, 187–199.

    Article  Google Scholar 

  • Kanellopoulos, I., & Wilkinson, G. G. (1997). Strategies and best practice for neural network image classification. International Journal of Remote Sensing, 18, 711–725.

    Article  Google Scholar 

  • Keerthi, S. S., Shevade, S. K., Bhattacharyya, C., & Murthy, K. R. K. (2001). Improvements to Platt’s SMO algorithm for SVM classifier design. Neural Computation, 13, 637–649.

    Article  Google Scholar 

  • Larsen, S., Pace, G., & Ormerod, S. J. (2010). Experimental effects of sediment deposition on the structure and function of macroinvertebrate assemblages in temperate streams. River Research and Applications, 27, 257–267.

    Article  Google Scholar 

  • Lek, S., Delacoste, M., Baran, P., Dimopoulos, I., Lauga, J., & Aulagnier, S. (1996). Application of neural networks to modelling nonlinear relationships in ecology. Ecological Modelling, 90, 39–52.

    Article  Google Scholar 

  • Li, Q., Yang, L. F., Wu, J., & Wang, B. X. (2006). Canonical correspondence analysis between EPT community distribution and environmental factors in Xitiaoxi River, Zhejiang, China. Acta Ecologica Sinica, 26(11), 3817–3825.

    Google Scholar 

  • Liu, L. S., Meng, W., Li, X. Z., Li, Z. C., Zheng, B. H., Lei, K., & Li, Z. Y. (2009). Studies on macrobenthos in the northern waters of Liaodong Bay: II. Biodiversity and community structure. Research of Environmental Sciences, 22(2), 155–161.

    CAS  Google Scholar 

  • Mackinson, S. (2000). An adaptive fuzzy expert system for predicting structure, dynamics and distribution of herring shoals. Ecological Modelling, 126, 155–178.

    Article  Google Scholar 

  • Maier, H. R., & Dandy, G. C. (2000). Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environmental Modelling & Software, 15, 101–124.

    Article  Google Scholar 

  • Manel, S., Dias, J. M., Buckton, S. T., & Ormerod, S. J. (1999). Alternative methods for predicting species distribution: an illustration with Himalayan river birds. Journal of Applied Ecology, 36, 734–747.

    Article  Google Scholar 

  • Martínez, A., Larranaga, A., Basaguren, A., Perez, J., Mendozalera, C., & Pozo, J. (2013). Stream regulation by small dams affects benthic macroinvertebrate communities: from structural changes to functional implications. Hydrobiologia, 711(1), 31–42.

    Article  Google Scholar 

  • McKay, S. F., & King, A. J. (2006). Potential ecological effects of water extraction in small, unregulated streams. River Research and Applications, 22, 1023–1037.

    Article  Google Scholar 

  • Mouton, A. M., De Baets, B., Van Broekhoven, E., & Goethals, P. L. M. (2009). Prevalence-adjusted optimisation of fuzzy models for species distribution. Ecological Modelling, 220, 1776–1786.

    Article  Google Scholar 

  • Mouton, A. M., Dedecker, A. P., Lek, S., & Goethals, P. L. M. (2010). Selecting variables for habitat suitability of Asellus (Crustacea, Isopoda) by applying input variable contribution methods to artificial neural network models. Environmental Modeling and Assessment, 15, 65–79.

    Article  Google Scholar 

  • Olden, J. D., & Jackson, D. A. (2002). Illuminating the “black box”: a randomization approach for understanding variable contributions in artificial neural networks. Ecological Modelling, 154, 135–150.

    Article  Google Scholar 

  • Ozesmi, U., Tan, C. O., Ozesmi, S. L., & Robertson, R. J. (2006). Generalizability of artificial neural network models in ecological applications: predicting nest occurrence and breeding success of the red-winged blackbird Agelaius phoeniceus. Ecological Modelling, 195, 94–104.

    Article  Google Scholar 

  • Park, Y. S., Cereghino, R., Compin, A., & Lek, S. (2003). Applications of artificial neural networks for patterning and predicting aquatic insect species richness in running waters. Ecological Modelling, 160, 265–280.

    Article  Google Scholar 

  • Piramuthu, S., Shaw, M. J., & Gentry, J. A. (1994). A classification approach using multi-layered neural networks. Decision Support Systems, 11, 509–525.

    Article  Google Scholar 

  • Randin, C. F., Dirnbock, T., Dullinger, S., Zimmermann, N. E., Zappa, M., & Guisan, A. (2006). Are niche-based species distribution models transferable in space? Journal of Biogeography, 33, 1689–1703.

    Article  Google Scholar 

  • Sadeghi Pasvisheh, R., Zarkami, R., & Van Damme, P. (2015). Optimizing habitat preference models of Azolla filiculoides (Lam.) [Azollaceae] for reducing ecological modelling complexity. Communications in Agricultural and Applied Biological Sciences, 80, 195–199.

    Google Scholar 

  • Salski, A., & Holsten, B. (2009). Fuzzy knowledge- and data-based models of damage to reeds by grazing of greylag geese. Ecological Informatics, 4, 156–162.

    Article  Google Scholar 

  • Scardi, M., & Harding, L. W. (1999). Developing an empirical model of phytoplankton primary production: a neural network case study. Ecological Modelling, 120, 213–223.

    Article  Google Scholar 

  • Stubbington, R., Wood, P. J., & Boulton, A. J. (2009). Low flow controls on benthic and hyporheic macroinvertebrate assemblages during supra-seasonal drought. Hydrological Processes, 23, 2252–2263.

    Article  Google Scholar 

  • Tirelli, T., & Pessani, D. (2009). Use of decision tree and artificial neural network approaches to model presence/absence of Telestes muticellus in Piedmont (North-Western Italy). River Research and Applications, 25, 1001–1012.

    Article  Google Scholar 

  • Wang, J., & Guo, C. (2011). Evaluation of river ecology healthiness for Guilin city section of Lijiang River. Water Science and Engineering Technology, 5, 68–71.

    Google Scholar 

  • Witten, I. H., & Frank, E. (2000). Data mining: practical machine learning tools and techniques with java implementations. San Francisco: Morgan Kaufmann Publishers. 369 pp.

    Google Scholar 

  • Zigler, S. J., Newton, T. J., Steuer, J. J., Bartsch, M. R., & Sauer, J. S. (2008). Importance of physical and hydraulic characteristics to unionid mussels: a retrospective analysis in a reach of large river. Hydrobiologia, 598, 343–360.

    Article  Google Scholar 

  • Zurita, G. A., & Bellocq, M. I. (2010). Spatial patterns of bird community similarity: bird responses to landscape composition and configuration in the Atlantic forest. Landscape Ecology, 25, 147–15.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support provided by the National Nature Science Foundation of China (51425902, 91547206) and the National Water Program (2014ZX07204-006-02). We appreciate Dr. Catherine Rice from the USA for proofreading the English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiuwen Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Y., Chen, Q., Chen, K. et al. Modelling the presence and identifying the determinant factors of dominant macroinvertebrate taxa in a karst river. Environ Monit Assess 188, 318 (2016). https://doi.org/10.1007/s10661-016-5322-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5322-3

Keywords

Navigation