Skip to main content

Advertisement

Log in

A novel approach for the development of tiered use biological criteria for rivers and streams in an ecologically diverse landscape

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

An Erratum to this article was published on 31 March 2016

Abstract

Water resource protection goals for aquatic life are often general and can result in under protection of some high quality water bodies and unattainable expectations for other water bodies. More refined aquatic life goals known as tiered aquatic life uses (TALUs) provide a framework to designate uses by setting protective goals for high quality water bodies and establishing attainable goals for water bodies altered by legally authorized legacy activities (e.g., channelization). Development of biological criteria or biocriteria typically requires identification of a set of least- or minimally-impacted reference sites that are used to establish a baseline from which goals are derived. Under a more refined system of stream types and aquatic life use goals, an adequate set of reference sites is needed to account for the natural variability of aquatic communities (e.g., landscape differences, thermal regime, and stream size). To develop sufficient datasets, Minnesota employed a reference condition approach in combination with an approach based on characterizing a stream’s response to anthropogenic disturbance through development of a Biological Condition Gradient (BCG). These two approaches allowed for the creation of ecologically meaningful and consistent biocriteria within a more refined stream typology and solved issues related to small sample sizes and poor representation of minimally- or least-disturbed conditions for some stream types. Implementation of TALU biocriteria for Minnesota streams and rivers will result in consistent and protective goals that address fundamental differences among waters in terms of their potential for restoration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. “Streams and rivers” are hereafter referred to collectively as “streams”

References

  • Ballentine, R. K., & Guarraia, L. J. (Eds.). (1977). The integrity of water. Proceedings of a symposium, March 10–12, 1975. Washington: US Environmental Protection Agency.

    Google Scholar 

  • Berthouex, P., & Hau, I. (1991). Difficulties related to using extreme percentiles for water quality regulations. Research Journal of the Water Pollution Control Federation, 63(6), 873–879.

    Google Scholar 

  • Courtemanch, D. L. (1996). Commentary in the subsampling procedures used for rapid bioassessments. Journal of the North American Benthological Society, 15(3), 381–385.

    Article  Google Scholar 

  • Courtemanch, D. L., Davies, S. P., & Laverty, E. B. (1989). Incorporation of biological information in water quality planning. Environmental Management, 13(1), 35–41.

    Article  Google Scholar 

  • Davies, S. P., & Jackson, S. K. (2006). The biological condition gradient: a descriptive model for interpreting change in aquatic ecosystems. Ecological Applications, 16(4), 1251–1266.

    Article  Google Scholar 

  • DeShon, J. E. (1995). Development and application of the Invertebrate Community Index (ICI). In W. S. Davis & T. P. Simon (Eds.), Biological assessment and criteria: tools for water resource planning and decision making (pp. 217–243). Boca Raton: Lewis.

    Google Scholar 

  • Fore, L., Karr, J., & Conquest, L. (1994). Statistical properties of an index of biological integrity used to evaluate water resources. Canadian Journal of Fisheries and Aquatic Sciences, 51(5), 1077–1087.

    Article  Google Scholar 

  • Frey, D. G. (1977). Biological integrity of water—an historical approach. In The integrity of water. Proceedings of a symposium. US Environmental Protection Agency. Washington, DC, USA, 1977 (pp. 127–140). Washington: US Environmental Protection Agency.

    Google Scholar 

  • Gakstatter, J., Gammon, J. R., Hughes, R. M., Ischinger, L. S., Johnson, M., Karr, J., Murphy, T., Murray, T. M., & Stuart, T. (1981). A recommended approach for determining biological integrity in flowing waters. Corvallis: U.S. Environmental Protection Agency.

    Google Scholar 

  • Gerritsen, J., Stamp J. (2013). Calibration of the Biological Condition Gradient (BCG) in Cold and Cool Waters of the Upper Midwest BCG for Fish and Benthic Macroinvertebrate Assemblages: Prepared by Tetra Tech, Inc. for U.S. Environmental Protection Agency. (Avaiable at: https://www.uwsp.edu/cnr-ap/biomonitoring/Documents/pdf/USEPA-BCG-Report-Final-2012.pdf).

  • Gerritsen, J., Zheng, L., Leppo, E., & Yoder, C. O. (2013). Calibration of the biological condition gradient for streams of Minnesota. St. Paul, MN: prepared for the Minnesota Pollution Control Agency. (Avaiable at: https://www.pca.state.mn.us/sites/default/files/wq-s6-32.pdf).

  • Gibson, G. R., Barbour, M., Stribling, J. B., Gerritsen, J., & Karr, J. R. (1996). Biological criteria: technical guidance for streams and rivers - revised edition. Washington, D.C.: U.S. Environmental Protection Agency. (Avaiable at: http://www.epa.gov/nscep).

  • Gorman, O. T., & Karr, J. R. (1978). Habitat structure and stream fish communities. Ecology, 59(3), 507–515.

    Article  Google Scholar 

  • Hawkins, C. P., Norris, R. H., Hogue, J. N., & Feminella, J. W. (2000a). Development and evaluation of predictive models for measuring the biological integrity of streams. Ecological Applications, 10(5), 1456–1477.

    Article  Google Scholar 

  • Hawkins, C., Norris, R., Gerritsen, J., Hughes, R., Jackson, S., Johnson, R., & Stevenson, R. (2000b). Evaluation of the use of landscape classifications for the prediction of freshwater biota: synthesis and recommendations. Journal of the North American Benthological Society, 19(3), 541–556.

    Article  Google Scholar 

  • Hawkins, C. P., Olson, J. R., & Hill, R. A. (2010). The reference condition: predicting benchmarks for ecological and water-quality assessments. Journal of the North American Benthological Society, 29(1), 312–343.

    Article  Google Scholar 

  • Hughes, R. M., Larsen, D. P., & Omernik, J. M. (1986). Regional reference sites: a method for assessing stream potentials. Environmental Management, 10(5), 629–635.

    Article  CAS  Google Scholar 

  • Hughes, R. M. (1995). Defining acceptable biological status by comparing with reference conditions. In W. S. Davis & T. P. Simon (Eds.), Biological assessment and criteria: tools for water resource planning and decision making (pp. 31–47). Boca Raton: Lewis.

    Google Scholar 

  • Karr, J., Fausch, K., Angermeier, P., Yant, P., & Schlosser, I. (1986). Assessing biological integrity in running waters: a method and its rationale. Illinois Natural History Survey Special Publication, 5, 23.

    Google Scholar 

  • Karr, J. R., & Chu, E. W. (1999). Restoring life in running waters. Washington: Island Press.

    Google Scholar 

  • Karr, J. R., & Dudley, D. R. (1981). Ecological perspective on water quality goals. Environmental Management, 5(1), 55–68.

    Article  Google Scholar 

  • Karr, J. R., & Yoder, C. O. (2004). Biological assessment and criteria improve total maximum daily load decision making. Journal of Environmental Engineering, 130, 594–604.

    Article  CAS  Google Scholar 

  • Koenker, R. (2009). quantreg: Quantile Regression. R package. (4.44 ed.).

  • Lyons, J. (1992). The length of stream to sample with a towed electrofishing unit when fish species richness is estimated. North American Journal of Fisheries Management, 16, 241–256.

    Article  Google Scholar 

  • Meador, M.R., Cuffney, T.F., and Gurtz, M.E. (1993). Methods for sampling fish communities as a part of the National Water-Quality Assessment Program (Open-File Report 93–104). U.S. Geological Survey (Available at: http://water.usgs.gov/nawqa/protocols/OFR-93-104/fish1.html)

  • Moya, N., Hughes, R. M., Domínguez, E., Gibon, F.-M., Goitia, E., & Oberdorff, T. (2011). Macroinvertebrate-based multimetric predictive models for evaluating the human impact on biotic condition of Bolivian streams. Ecological Indicators, 11(3), 840–847.

    Article  Google Scholar 

  • MPCA. (2002). Physical Habitat and Water Chemistry Assessment Protocol for Wadeable Stream Monitoring Sites (wq-bsm3-01). St. Paul: Minnesota Pollution Control Agency (Available at: https://www.pca.state.mn.us/sites/default/files/wq-bsm3-01.pdf).

    Google Scholar 

  • MPCA. (2004). Invertebrate Sampling Procedures (wq-bsm3-08). St. Paul: Minnesota Pollution Control Agency (Available at: https://www.pca.state.mn.us/sites/default/files/wq-bsm3-08.pdf).

    Google Scholar 

  • MPCA. (2009). Fish community sampling protocol for stream monitoring sites (wq-bsm3-03). St. Paul: Minnesota Pollution Control Agency (Available at: https://www.pca.state.mn.us/sites/default/files/wq-bsm3-03.pdf).

    Google Scholar 

  • MPCA. (2014a). Development of biological criteria for tiered aquatic life uses: fish and macroinvertebrate thresholds for attainment of aquatic life use goals in Minnesota streams and rivers. St. Paul: Minnesota Pollution Control Agency, Environmental Analysis and Outcomes Division (Available at: https://www.pca.state.mn.us/sites/default/files/wq-bsm4-02.pdf).

    Google Scholar 

  • MPCA. (2014b). Development of fish indices of biological integrity (FIBI) for Minnesota rivers and streams. St. Paul: Minnesota Pollution Control Agency (Available at: https://www.pca.state.mn.us/sites/default/files/wq-bsm2-03.pdf).

    Google Scholar 

  • MPCA. (2014c). Development of macroinvertebrate indices of biological integrity (MIBI) for Minnesota streams. St. Paul: Minnesota Pollution Control Agency (Available at: https://www.pca.state.mn.us/sites/default/files/wq-bsm4-01.pdf).

    Google Scholar 

  • MPCA. (2015). Draft technical guidance for designating aquatic life uses in Minnesota streams and rivers. St. Paul: Minnesota Pollution Control Agency (Available at: https://www.pca.state.mn.us/sites/default/files/wq-s6-34.pdf).

  • MPCA. (2016). Development of a Human Disturbance Score (HDS) for Minnesota streams. St. Paul: Minnesota Pollution Control Agency (Available at: https://www.pca.state.mn.us/sites/default/files/wq-bsm3-10.pdf). Accessed 17 Feb 2016.

  • Ohio, E. P. A. (1987). Biological criteria for the protection of aquatic life: Volume I: the role of biological data in water quality assessment. Columbus: Ohio EPA division of Water Quality Planning and Assessment (Available at: http://www.epa.state.oh.us/Portals/35/documents/Vol1.pdf).

    Google Scholar 

  • Ohio, E. P. A. (1989). Biological Criteria for the Protection of Aquatic Life: Volume III. Standardized Biological Field Sampling and Laboratory Methods for Assessing Fish and Macroinvertebrate Communities. Columbus: Ohio EPA division of Water Quality Planning and Assessment (Available at: http://www.epa.state.oh.us/portals/35/documents/BioCrit15_Vol3.pdf).

    Google Scholar 

  • Paulsen, S. G., Mayio, A., Peck, D. V., Stoddard, J. L., Tarquinio, E., Holdsworth, S. M., Sickle, J. V., Yuan, L. L., Hawkins, C. P., & Herlihy, A. T. (2008). Condition of stream ecosystems in the US: an overview of the first national assessment. Journal of the North American Benthological Society, 27(4), 812–821.

    Article  Google Scholar 

  • Pont, D., Hugueny, B., Beier, U., Goffaux, D., Melcher, A., Noble, R., Rogers, C., Roset, N., & Schmutz, S. (2006). Assessing river biotic condition at a continental scale: a European approach using functional metrics and fish assemblages. Journal of Applied Ecology, 43(1), 70–80.

    Article  Google Scholar 

  • Pont, D., Hughes, R. M., Whittier, T. R., & Schmutz, S. (2009). A predictive index of biotic integrity model for aquatic-vertebrate assemblages of Western U.S. streams. Transactions of the American Fisheries Society, 138, 292–305.

    Article  Google Scholar 

  • R Development Core Team. (2015). R: A language and environment for statistical computing. (3.1.3 ed.). Vienna, Austria: R Foundation for Statistical Computing.

  • Rankin, E. T. (1995). Habitat indices in water resource quality assessments. In W. S. Davis & T. P. Simon (Eds.), Biological assessment and criteria: tools for water resource planning and decision making (pp. 181–208). Boca Raton: Lewis Publishers.

    Google Scholar 

  • Reynoldson, T. B., Day, K. E., & Pascoe, T. (2000). The development of the BEAST: a predictive approach for assessing quality in the North American Great Lakes. In J. F. Wright & D. W. Sutcliffe (Eds.), Assessing the biological quality of fresh waters: RIVPACS and other techniques (pp. 167–180). Cumbria: Freshwater Biological Association.

    Google Scholar 

  • Reynoldson, T. B., Norris, R. H., Resh, V. H., Day, K. E., & Rosenberg, D. M. (1997). The reference condition: a comparison of multimetric and multivariate approaches to assess water-quality impairment using benthic macroinvertebrates. Journal of the North American Benthological Society, 16(4), 833–852.

    Article  Google Scholar 

  • Schinegger, R., Trautwein, C., Melcher, A., & Schmutz, S. (2012). Multiple human pressures and their spatial patterns in European running waters. Water Environment Journal, 26(2), 261–273.

    Article  Google Scholar 

  • Schlosser, I. J. (1987). A conceptual framework for fish communities in small warmwater streams. Community and evolutionary ecology of North American stream fishes, 17–26

  • Smith, M. J., Kay, W. R., Edward, D. H. D., Papas, P. J., Richardson, J., Simpson, J. C., Pinder, A. M., Cale, D. J., Horwitz, P. H. J., Davis, J. A., Yung, F. H., Norris, R. H., & Halse, S. A. (1999). AusRivAS: using macroinvertebrates to assess ecological condition of rivers in Western Australia. Freshwater Biology, 41, 269–282.

    Article  Google Scholar 

  • State of Ohio. (2010). State of Ohio Water Quality Standards, Water use designations and statewide criteria, Chapter 3745–1. (Chapter 3745–1). Cincinnatti, Ohio. (Availabe at: http://www.epa.ohio.gov/portals/35/rules/01_all.pdf).

  • Stoddard, J., Larsen, D., Hawkins, C., Johnson, R., & Norris, R. (2006). Setting expectations for the ecological condition of streams: the concept of reference condition. Ecological Applications, 16(4), 1267–1276.

    Article  Google Scholar 

  • Systat Software. (2011). SigmaPlot for Windows (12th ed.). Chicago: Systat Software. Inc.

    Google Scholar 

  • USEPA. (1990). Biological Criteria: National program guidance for surface waters (EPA 440/5-90-004). U.S. Environmental Protection Agency: Washington. Avaiable at: http://www.epa.gov/nscep.

    Google Scholar 

  • USEPA. (2011). A primer on using biological assessment to support water quality management (EPA 810-R-11-01). Washington: Office of Science and Technology, Office of Water. Avaiable at: http://www.epa.gov/nscep.

    Google Scholar 

  • USEPA. (2013). Biological assessment program review: assessing level of technical rigor to support water quality management (EPA 820-R-13-001). Washington: Office of Science and Technology. Avaiable at: http://www.epa.gov/nscep.

    Google Scholar 

  • USEPA. (2016). A Practitioner’s Guide to the Biological Condition Gradient: A Framework to Describe Incremental Change in Aquatic Ecosystems. Washington: U.S. Environmental Protection Agency. Available at: http://www.epa.gov/wqc/biological-assessment-technical-assistance-documents-states-tribes-and-territories. Accessed 17 Feb 2016.

  • Van Sickle, J., & Hughes, R. M. (2000). Classification strengths of ecoregions, catchments, and geographic clusters for aquatic vertebrates in Oregon. Journal of the North American Benthological Society, 19(3), 370–384.

    Article  Google Scholar 

  • Vinson, M. R., & Hawkins, C. P. (1996). Effects of sampling area and subsampling procedure in comparisons of taxa richness among streams. Journal of the North American Benthological Society, 15(3), 392–399.

    Article  Google Scholar 

  • Waite, I. R., Herlihy, A. T., Larsen, D. P., & Klemm, D. J. (2000). Comparing strengths of geographic and nongeographic classifications of stream benthic macroinvertebrates in the Mid-Atlantic Highlands, USA. Journal of the North American Benthological Society, 19(3), 429–411.

    Article  Google Scholar 

  • White, D., & Omernik, J. M. (2007). Minnesota level III and IV ecoregions map (scale 1:2,500,000). Corvallis: U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Western Ecology Division.

    Google Scholar 

  • Whittier, T., Hughes, R., Stoddard, J., Lomnicky, G., Peck, D., & Herlihy, A. (2007). A structured approach for developing indices of biotic integrity: three examples from streams and rivers in the Western USA. Transactions of the American Fisheries Society, 136(3), 718–735.

    Article  Google Scholar 

  • Wright, J. F., Furse, M. T., & Moss, D. (1998). River classification using invertebrates: RIVPACS applications. Aquatic Conservation: Marine and Freshwater Ecosystems, 8, 617–631.

    Article  Google Scholar 

  • Yarbro, L. A., Kuenzler, E. J., Mulholland, P. J., & Sniffen, R. P. (1984). Effects of stream channelization on exports of nitrogen and phosphorus from North Carolina coastal plain watersheds. Environmental Management, 8(2), 151–160.

    Article  CAS  Google Scholar 

  • Yoder, C. (1995). Policy issues and management applications of biological criteria. In W. S. Davis & T. Simon (Eds.), Biological assessment and criteria: tools for water resource planning and decision making (pp. 327–344). Boca Raton: Lewis Publishers.

    Google Scholar 

  • Yoder, C. O., & Rankin, E. T. (1995). Biological criteria program development and implementation in Ohio. In W. S. Davis & T. P. Simon (Eds.), Biological assessment and criteria: tools for water resource planning and decision making (pp. 109–144). Boca Raton: Lewis Publishers.

    Google Scholar 

  • Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353.

    Article  Google Scholar 

  • Zadeh, L. A. (2008). Is there a need for fuzzy logic? Information Sciences, 178(13), 2751–2779.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the many staff and interns that performed field work and collected the extensive biological, habitat, and chemical data used in this study. Brenda DeZiel, Jeroen Gerritsen, Ed Hammer, Susan Jackson, Ed Rankin, Bryan Spindler, Kevin Stroom, and Mark Tomasek provided valuable input during the development of this project. We would also like to thank two anonymous reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. William Bouchard Jr..

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouchard, R.W., Niemela, S., Genet, J.A. et al. A novel approach for the development of tiered use biological criteria for rivers and streams in an ecologically diverse landscape. Environ Monit Assess 188, 196 (2016). https://doi.org/10.1007/s10661-016-5181-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5181-y

Keywords

Navigation