Skip to main content
Log in

Occurrence of non-steroidal anti-inflammatory drugs in Tehran source water, municipal and hospital wastewaters, and their ecotoxicological risk assessment

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Pharmaceuticals are becoming widely distributed in waters and wastewaters and pose a serious threat to public health. The present study aimed to analyze non-steroidal anti-inflammatory drugs (NSAIDs) in surface waters, drinking water, and wastewater in Tehran, Iran. Thirty-six samples were collected from surface waters, tap water, and influent and effluent of municipal and hospital wastewater treatment plants (WWTP). A solid-phase extraction (SPE) followed by liquid chromatography–tandem mass spectrometry method was used for the determination of pharmaceuticals, namely ibuprofen (IBP), naproxen (NPX), diclofenac (DIC), and indomethacin (IDM). IBP was found in most of the samples and had the highest concentration. The highest concentrations of NSAIDs were found in the municipal WWTP influents and hospital WWTP effluents. In the municipal WWTP influent samples, the concentrations of IBP, NPX, DIC, and IDM were 1.05, 0.43, 0.23, and 0.11 μg/L, respectively. DIC was found only in one river sample. All NSAIDs were detected in tap water samples. However, their concentration was very low and the maximum values for IBP, NPX, DIC, and IDM were 47, 39, 24, and 37 ng/L, respectively, in tap water samples. Results showed that the measured pharmaceuticals were detected in all rivers with low concentrations in nanograms per liter range, except DIC which was found only in one river. Furthermore, this study showed that the aforementioned pharmaceuticals are not completely removed during their passage through WWTPs. A potential environmental risk of selected NSAIDs for the urban wastewater has been discussed. However, given their low measured concentrations, no ecotoxicological effect is suspected to occur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ali, I., Singh, P., Aboul-Enein, H. Y., & Sharma, B. (2009). Chiral analysis of ibuprofen residues in water and sediment. Analytical Letters, 42(12), 1747–1760. doi:10.1080/00032710903060768.

    Article  CAS  Google Scholar 

  • Andreozzi, R., Raffaele, M., & Nicklas, P. (2003). Pharmaceuticals in STP effluents and their solar photodegradation in aquatic environment. Chemosphere, 50(10), 1319–1330. doi:10.1016/S0045-6535(02)00769-5.

    Article  CAS  Google Scholar 

  • Barnes, K. K., Kolpin, D. W., Furlong, E. T., Zaugg, S. D., Meyer, M. T., & Barber, L. B. (2008). A national reconnaissance of pharmaceuticals and other organic wastewater contaminants in the United States—I) groundwater. Science of the Total Environment, 402(2–3), 192–200.

    Article  CAS  Google Scholar 

  • Boström, M. L., & Berglund, O. (2015). Influence of pH-dependent aquatic toxicity of ionizable pharmaceuticals on risk assessments over environmental pH ranges. Water Research, 72(0), 154–161. doi:10.1016/j.watres.2014.08.040.

    Article  Google Scholar 

  • Boyd, G. R., Reemtsma, H., Grimm, D. A., & Mitra, S. (2003). Pharmaceuticals and personal care products (PPCPs) in surface and treated waters of Louisiana, USA and Ontario, Canada. Science of the Total Environment, 311(1–3), 135–149. doi:10.1016/S0048-9697(03)00138-4.

    Article  CAS  Google Scholar 

  • Boyd, G. R., Zhang, S., & Grimm, D. A. (2005). Naproxen removal from water by chlorination and biofilm processes. Water Research, 39(4), 668–676. doi:10.1016/j.watres.2004.11.013.

    Article  CAS  Google Scholar 

  • Buser, H.-R., Poiger, T., & Müller, M. D. (1998). Occurrence and fate of the pharmaceutical drug diclofenac in surface waters: rapid photodegradation in a lake. Environmental Science & Technology, 32(22), 3449–3456.

    Article  CAS  Google Scholar 

  • Buser, H.-R., Poiger, T., & Müller, M. D. (1999). Occurrence and environmental behavior of the chiral pharmaceutical drug ibuprofen in surface waters and in wastewater. Environmental Science & Technology, 33(15), 2529–2535. doi:10.1021/es981014w.

    Article  CAS  Google Scholar 

  • Camacho-Muñoz, D., Martín, J., Santos, J. L., Aparicio, I., & Alonso, E. (2010). Occurrence, temporal evolution and risk assessment of pharmaceutically active compounds in Doñana Park (Spain). Journal of Hazardous Materials, 183(1–3), 602–608. doi:10.1016/j.jhazmat.2010.07.067.

    Article  Google Scholar 

  • Castiglioni, S., Bagnati, R., Fanelli, R., Pomati, F., Calamari, D., & Zuccato, E. (2006). Removal of pharmaceuticals in sewage treatment plants in Italy. Environmental Science and Technology, 40(1), 357–363.

    Article  CAS  Google Scholar 

  • Chan, C. C., Lam, H., Lee, Y., & Zhang, X.-M. (2004). Analytical method validation and instrument performance verification (vol. 18): Wiley Online Library.

  • Clara, M., Strenn, B., Gans, O., Martinez, E., Kreuzinger, N., & Kroiss, H. (2005). Removal of selected pharmaceuticals, fragrances and endocrine disrupting compounds in a membrane bioreactor and conventional wastewater treatment plants. Water Research, 39(19), 4797–4807. doi:10.1016/j.watres.2005.09.015.

    Article  CAS  Google Scholar 

  • Cleuvers, M. (2004). Mixture toxicity of the anti-inflammatory drugs diclofenac, ibuprofen, naproxen, and acetylsalicylic acid. Ecotoxicology and Environmental Safety, 59(3), 309–315.

    Article  CAS  Google Scholar 

  • Daneshvar, A., Svanfelt, J., Kronberg, L., & Weyhenmeyer, G. (2010). Winter accumulation of acidic pharmaceuticals in a Swedish river. Environmental Science and Pollution Research, 17(4), 908–916. doi:10.1007/s11356-009-0261-y.

    Article  CAS  Google Scholar 

  • de Jesus Gaffney, V., Almeida, C. M. M., Rodrigues, A., Ferreira, E., Benoliel, M. J., & Cardoso, V. V. (2015). Occurrence of pharmaceuticals in a water supply system and related human health risk assessment. Water Research, 72, 199–208. doi:10.1016/j.watres.2014.10.027.

    Article  Google Scholar 

  • EU (2013). Directive 2013/39/EU of the European Parliament and of the Council. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2013:226:0001:0017:EN:PDF (2013).

  • Fatemi, M. H., & Ghorbannezhad, Z. (2011). Estimation of the volume of distribution of some pharmacologically important compounds from their structural descriptors. Journal of the Serbian Chemical Society, 76(7), 1003–1014.

    Article  CAS  Google Scholar 

  • Fatta, D., Achilleos, A., Nikolaou, A., & Meriç, S. (2007). Analytical methods for tracing pharmaceutical residues in water and wastewater. TrAC Trends in Analytical Chemistry, 26(6), 515–533. doi:10.1016/j.trac.2007.02.001.

    Article  CAS  Google Scholar 

  • Fent, K., Weston, A. A., & Caminada, D. (2006). Ecotoxicology of human pharmaceuticals. Aquatic Toxicology, 76(2), 122–159. doi:10.1016/j.aquatox.2005.09.009.

    Article  CAS  Google Scholar 

  • Ferrari, B., Mons, R., Vollat, B., Fraysse, B., Paxēaus, N., Giudice, R. L., et al. (2004). Environmental risk assessment of six human pharmaceuticals: are the current environmental risk assessment procedures sufficient for the protection of the aquatic environment? Environmental Toxicology and Chemistry, 23(5), 1344–1354. doi:10.1897/03-246.

    Article  CAS  Google Scholar 

  • Gentili, A. (2007). Determination of non-steroidal anti-inflammatory drugs in environmental samples by chromatographic and electrophoretic techniques. Analytical and Bioanalytical Chemistry, 387(4), 1185–1202. doi:10.1007/s00216-006-0821-7.

    Article  CAS  Google Scholar 

  • Ginebreda, A., Muñoz, I., de Alda, M. L., Brix, R., López-Doval, J., & Barceló, D. (2010). Environmental risk assessment of pharmaceuticals in rivers: relationships between hazard indexes and aquatic macroinvertebrate diversity indexes in the Llobregat River (NE Spain). Environment International, 36(2), 153–162. doi:10.1016/j.envint.2009.10.003.

    Article  CAS  Google Scholar 

  • Gómez, M. J., Martínez Bueno, M. J., Lacorte, S., Fernández-Alba, A. R., & Agüera, A. (2007). Pilot survey monitoring pharmaceuticals and related compounds in a sewage treatment plant located on the Mediterranean coast. Chemosphere, 66(6), 993–1002. doi:10.1016/j.chemosphere.2006.07.051.

    Article  Google Scholar 

  • Gros, M., Petrović, M., & Barceló, D. (2007). Wastewater treatment plants as a pathway for aquatic contamination by pharmaceuticals in the Ebro River basin (Northeast Spain). Environmental Toxicology and Chemistry, 26(8), 1553–1562. doi:10.1897/06-495r.1.

    Article  CAS  Google Scholar 

  • Heberer, T., Schmidt-Bäumler, K., & Stan, H. J. (1998). Occurrence and distribution of organic contaminants in the aquatic system in Berlin. Part I: drug residues and other polar contaminants in Berlin surface and groundwater. Acta Hydrochimica et Hydrobiologica, 26(5), 272–278. doi:10.1002/(sici)1521-401x(199809)26:5<272::aid-aheh272>3.0.co;2-o.

    Article  CAS  Google Scholar 

  • Hernando, M. D., Heath, E., Petrovic, M., & Barceló, D. (2006). Trace-level determination of pharmaceutical residues by LC-MS/MS in natural and treated waters. A pilot-survey study. Analytical and Bioanalytical Chemistry, 385(6), 985–991. doi:10.1007/s00216-006-0394-5.

    Article  CAS  Google Scholar 

  • Huerta-Fontela, M., Galceran, M. T., & Ventura, F. (2011). Occurrence and removal of pharmaceuticals and hormones through drinking water treatment. Water Research, 45(3), 1432–1442. doi:10.1016/j.watres.2010.10.036.

    Article  CAS  Google Scholar 

  • Jelic, A., Gros, M., Ginebreda, A., Cespedes-Sánchez, R., Ventura, F., Petrovic, M., et al. (2011). Occurrence, partition and removal of pharmaceuticals in sewage water and sludge during wastewater treatment. Water Research, 45(3), 1165–1176. doi:10.1016/j.watres.2010.11.010.

    Article  CAS  Google Scholar 

  • Jones, O. A. H., Voulvoulis, N., & Lester, J. N. (2002). Aquatic environmental assessment of the top 25 English prescription pharmaceuticals. Water Research, 36(20), 5013–5022. doi:10.1016/S0043-1354(02)00227-0.

    Article  CAS  Google Scholar 

  • Jones, O. A. H., Voulvoulis, N., & Lester, J. N. (2007). The occurrence and removal of selected pharmaceutical compounds in a sewage treatment works utilising activated sludge treatment. Environmental Pollution, 145(3), 738–744. doi:10.1016/j.envpol.2005.08.077.

    Article  CAS  Google Scholar 

  • Kim, S. D., Cho, J., Kim, I. S., Vanderford, B. J., & Snyder, S. A. (2007). Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters. Water Research, 41(5), 1013–1021.

    Article  CAS  Google Scholar 

  • Kosjek, T., Heath, E., & Kompare, B. (2007). Removal of pharmaceutical residues in a pilot wastewater treatment plant. Analytical and Bioanalytical Chemistry, 387(4), 1379–1387. doi:10.1007/s00216-006-0969-1.

    Article  CAS  Google Scholar 

  • Kreuzinger, N., Clara, M., Strenn, B., & Kroiss, H. (2004). Relevance of the sludge retention time (SRT) as design criteria for wastewater treatment plants for the removal of endocrine disruptors and pharmaceuticals from wastewater. Water Science and Technology, 50, 149–156.

    CAS  Google Scholar 

  • Kulik, N., Trapido, M., Goi, A., Veressinina, Y., & Munter, R. (2008). Combined chemical treatment of pharmaceutical effluents from medical ointment production. Chemosphere, 70(8), 1525–1531. doi:10.1016/j.chemosphere.2007.08.026.

    Article  CAS  Google Scholar 

  • Kumirska, J., Migowska, N., Caban, M., Łukaszewicz, P., & Stepnowski, P. (2015). Simultaneous determination of non-steroidal anti-inflammatory drugs and oestrogenic hormones in environmental solid samples. Science of the Total Environment, 508, 498–505. doi:10.1016/j.scitotenv.2014.12.020.

    Article  CAS  Google Scholar 

  • Limnell, T., Heikkilä, T., Santos, H. A., Sistonen, S., Hellstén, S., Laaksonen, T., et al. (2011). Physicochemical stability of high indomethacin payload ordered mesoporous silica MCM-41 and SBA-15 microparticles. International Journal of Pharmaceutics, 416(1), 242–251. doi:10.1016/j.ijpharm.2011.06.050.

    CAS  Google Scholar 

  • Lin, A. Y.-C., Yu, T.-H., & Lateef, S. K. (2009). Removal of pharmaceuticals in secondary wastewater treatment processes in Taiwan. Journal of Hazardous Materials, 167(1–3), 1163–1169. doi:10.1016/j.jhazmat.2009.01.108.

    Article  CAS  Google Scholar 

  • Lindqvist, N., Tuhkanen, T., & Kronberg, L. (2005). Occurrence of acidic pharmaceuticals in raw and treated sewages and in receiving waters. Water Research, 39(11), 2219–2228. doi:10.1016/j.watres.2005.04.003.

    Article  CAS  Google Scholar 

  • Lolić, A., Paíga, P., Santos, L. H. M. L. M., Ramos, S., Correia, M., & Delerue-Matos, C. (2015). Assessment of non-steroidal anti-inflammatory and analgesic pharmaceuticals in seawaters of north of Portugal: occurrence and environmental risk. Science of the Total Environment, 508, 240–250. doi:10.1016/j.scitotenv.2014.11.097.

    Article  Google Scholar 

  • Mainero Rocca, L., Gentili, A., Caretti, F., Curini, R., & Pérez-Fernández, V. (2015). Occurrence of non-steroidal anti-inflammatory drugs in surface waters of Central Italy by liquid chromatography–tandem mass spectrometry. International Journal of Environmental Analytical Chemistry, 95(8), 685–697. doi:10.1080/03067319.2015.1046059.

    Article  CAS  Google Scholar 

  • Metcalfe, C. D., Miao, X. S., Koenig, B. G., & Struger, J. (2003). Distribution of acidic and neutral drugs in surface waters near sewage treatment plants in the lower Great Lakes, Canada. Environmental Toxicology and Chemistry, 22(12), 2881–2889.

    Article  CAS  Google Scholar 

  • Miao, X.-S., Koenig, B. G., & Metcalfe, C. D. (2002). Analysis of acidic drugs in the effluents of sewage treatment plants using liquid chromatography–electrospray ionization tandem mass spectrometry. Journal of Chromatography A, 952(1–2), 139–147. doi:10.1016/S0021-9673(02)00088-2.

    Article  CAS  Google Scholar 

  • Nikolaou, A., Meric, S., & Fatta, D. (2007). Occurrence patterns of pharmaceuticals in water and wastewater environments. Analytical and Bioanalytical Chemistry, 387(4), 1225–1234. doi:10.1007/s00216-006-1035-8.

    Article  CAS  Google Scholar 

  • Noutsopoulos, C., Koumaki, E., Mamais, D., Nika, M.-C., Bletsou, A. A., & Thomaidis, N. S. (2015). Removal of endocrine disruptors and non-steroidal anti-inflammatory drugs through wastewater chlorination: the effect of pH, total suspended solids and humic acids and identification of degradation by-products. Chemosphere, 119, Supplement(0), S109-S114, doi:10.1016/j.chemosphere.2014.04.107.

  • Paíga, P., Santos, L. M. L. M., Amorim, C., Araújo, A., Montenegro, M. C. S. M., Pena, A., et al. (2013). Pilot monitoring study of ibuprofen in surface waters of north of Portugal. Environmental Science and Pollution Research, 20(4), 2410–2420. doi:10.1007/s11356-012-1128-1.

    Article  Google Scholar 

  • Quintana, J. B., & Reemtsma, T. (2004). Sensitive determination of acidic drugs and triclosan in surface and wastewater by ion-pair reverse-phase liquid chromatography/tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 18(7), 765–774. doi:10.1002/rcm.1403.

    Article  CAS  Google Scholar 

  • Rosal, R., Rodríguez, A., Perdigón-Melón, J. A., Petre, A., García-Calvo, E., Gómez, M. J., et al. (2010). Occurrence of emerging pollutants in urban wastewater and their removal through biological treatment followed by ozonation. Water Research, 44(2), 578–588. doi:10.1016/j.watres.2009.07.004.

    Article  CAS  Google Scholar 

  • Sanderson, H., Johnson, D. J., Wilson, C. J., Brain, R. A., & Solomon, K. R. (2003). Probabilistic hazard assessment of environmentally occurring pharmaceuticals toxicity to fish, daphnids and algae by ECOSAR screening. Toxicology Letters, 144(3), 383–395. doi:10.1016/S0378-4274(03)00257-1.

    Article  CAS  Google Scholar 

  • Santiago-Morales, J., Agüera, A., Gómez, M. d. M., Fernández-Alba, A. R., Giménez, J., Esplugas, S., et al. (2013). Transformation products and reaction kinetics in simulated solar light photocatalytic degradation of propranolol using Ce-doped TiO2. Applied Catalysis B: Environmental, 129(0), 13–29, doi:10.1016/j.apcatb.2012.09.023.

  • Scheytt, T., Mersmann, P., Lindstädt, R., & Heberer, T. (2005). 1-octanol/water partition coefficients of 5 pharmaceuticals from human medical care: carbamazepine, clofibric acid, diclofenac, ibuprofen, and propyphenazone. Water, Air, and Soil Pollution, 165(1–4), 3–11. doi:10.1007/s11270-005-3539-9.

    Article  CAS  Google Scholar 

  • Shanmugam, G., Sampath, S., Selvaraj, K., Larsson, D. G. J., & Ramaswamy, B. (2014). Non-steroidal anti-inflammatory drugs in Indian rivers. Environmental Science and Pollution Research, 21(2), 921–931. doi:10.1007/s11356-013-1957-6.

    Article  CAS  Google Scholar 

  • Singh, K. P., Rai, P., Singh, A. K., Verma, P., & Gupta, S. (2014). Occurrence of pharmaceuticals in urban wastewater of north Indian cities and risk assessment. Environmental Monitoring and Assessment, 186(10), 6663–6682.

    Article  CAS  Google Scholar 

  • Suzuki, T., Kosugi, Y., Hosaka, M., Nishimura, T., & Nakae, D. (2014). Occurrence and behavior of the chiral anti-inflammatory drug naproxen in an aquatic environment. Environmental Toxicology and Chemistry, n/a-n/a. doi:10.1002/etc.2741.

    Google Scholar 

  • Tixier, C., Singer, H. P., Oellers, S., & Müller, S. R. (2003). Occurrence and fate of carbamazepine, clofibric acid, diclofenac, ibuprofen, ketoprofen, and naproxen in surface waters. Environmental Science and Technology, 37(6), 1061–1068. doi:10.1021/es025834r.

    Article  CAS  Google Scholar 

  • Togunde, O. P., Oakes, K. D., Servos, M. R., & Pawliszyn, J. (2012). Determination of pharmaceutical residues in fish bile by solid-phase microextraction couple with liquid chromatography-tandem mass spectrometry (LC/MS/MS). Environmental Science & Technology, 46(10), 5302–5309. doi:10.1021/es203758n.

    Article  CAS  Google Scholar 

  • Tran, N. H., Urase, T., & Ta, T. T. (2014). A preliminary study on the occurrence of pharmaceutically active compounds in hospital wastewater and surface water in Hanoi, Vietnam. CLEAN – Soil, Air, Water, 42(3), 267–275. doi:10.1002/clen.201300021.

    Article  CAS  Google Scholar 

  • USEPA (2007). Pharmaceuticals and personal care products in water, soil, sediment, and biosolids by HPLC/MS/MS. U.S. Environmental Protection Agency Office of Water Office of Science and Technology Engineering and Analysis Division. (pp. 77). Washington, DC 20460.

  • Vane, J. R., & Botting, R. M. (1998). Anti-inflammatory drugs and their mechanism of action. Inflammation Research, 47(2), 78–87. doi:10.1007/s000110050284.

    Article  Google Scholar 

  • Vieno, N., & Sillanpää, M. (2014). Fate of diclofenac in municipal wastewater treatment plant—a review. Environment International, 69(0), 28–39. doi:10.1016/j.envint.2014.03.021.

    Article  CAS  Google Scholar 

  • Weigel, S., Berger, U., Jensen, E., Kallenborn, R., Thoresen, H., & Hühnerfuss, H. (2004). Determination of selected pharmaceuticals and caffeine in sewage and seawater from Tromsø/Norway with emphasis on ibuprofen and its metabolites. Chemosphere, 56(6), 583–592. doi:10.1016/j.chemosphere.2004.04.015.

    Article  CAS  Google Scholar 

  • Yamamoto, H., Nakamura, Y., Kitani, C., Imari, T., Sekizawa, J., Takao, Y., et al. (2007). Initial ecological risk assessment of eight selected human pharmaceuticals in Japan. Environmental Sciences : an International Journal of Environmental Physiology and Toxicology, 14(4), 177–193.

    CAS  Google Scholar 

  • Ziylan, A., & Ince, N. H. (2011). The occurrence and fate of anti-inflammatory and analgesic pharmaceuticals in sewage and fresh water: treatability by conventional and non-conventional processes. Journal of Hazardous Materials, 187(1–3), 24–36. doi:10.1016/j.jhazmat.2011.01.057.

    Article  CAS  Google Scholar 

  • Zorita, S., Mårtensson, L., & Mathiasson, L. (2009). Occurrence and removal of pharmaceuticals in a municipal sewage treatment system in the south of Sweden. Science of the Total Environment, 407(8), 2760–2770. doi:10.1016/j.scitotenv.2008.12.030.

    Article  CAS  Google Scholar 

  • Zwiener, C., & Frimmel, F. H. (2000). Oxidative treatment of pharmaceuticals in water. Water Research, 34(6), 1881–1885. doi:10.1016/S0043-1354(99)00338-3.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant (No. 92-03-46-24061) from Tehran University of Medical Sciences Center of the Air Pollution Research (CAPR). This work was undertaken as a part of the PhD dissertation at the School of Public Health, Shahid Beheshti University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anvar Asadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eslami, A., Amini, M.M., Yazdanbakhsh, A.R. et al. Occurrence of non-steroidal anti-inflammatory drugs in Tehran source water, municipal and hospital wastewaters, and their ecotoxicological risk assessment. Environ Monit Assess 187, 734 (2015). https://doi.org/10.1007/s10661-015-4952-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4952-1

Keywords

Navigation