Skip to main content

Advertisement

Log in

Correlation of soil organic carbon and nutrients (NPK) to soil mineralogy, texture, aggregation, and land use pattern

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

This work investigates the correlations existing among soil organic carbon (C), nitrogen (N), phosphorous (P), potassium (K), and physicochemical properties like clay mineralogy, textural components, soil aggregation, and land use pattern. Seven different locations were chosen in the tropical rainforest climate region of Assam, India, for the work. The soil texture classifications were clay, sandy clay loam, and sandy loam with mixed clay mineralogy consisting of tectosilicates and phylosilicates. Two distinct compositions of total Fe/Al oxides ≥11.5 and <10.8 % were observed along with two distinct groups of water stable soil aggregates of mean weight diameter ≈6.42 and ≤3.26 mm. The soil clay and sand had positive and negative contributions respectively to the soil organic carbon (SOC) protection, which was observed to be dependent on lesser sand content, higher silt + clay content, and the presence of higher percentages of total Fe/Al oxides. Soil clay mineralogy suggested that the mineral, chlorite, favored retention of higher SOC content in a particular site. Under similar climatic and mineralogical conditions, both natural and anthropogenic soil disturbances destabilized SOC protection through SOM mineralization and soil aggregate destabilization as indicated by SOC protective capacity studies. Urbanization resulting in soil compaction contributed to enhanced SOC level through increased contact between the occluded organic carbon and the soil mineralogical constituents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Almond, C. (2004). Basic research on the origin and molecular structure of forms stable organic matter relating to the process of abduction soil organic carbon. Edaphology, 11(2), 229–248.

    Google Scholar 

  • Anderson, D. W. (1988). The effect of parent material and soil development on nutrient cycling in temperature ecosystems. Biogeochemistry, 5, 71–97.

    Article  Google Scholar 

  • Baruah, T. C., & Barthakur, H. P. (1997). A textbook of soil analysis, vikash publishing house Pvt. Ltd: New Delhi ISBN 978–81-259-0366-6.

    Google Scholar 

  • Bruun, T. B., Elberling, B., & Christensen, B. T. (2010). Lability of soil organic carbon in tropical soils with different clay minerals. Soil Biology & Biochemistry, 42, 888–895.

    Article  CAS  Google Scholar 

  • Cheshire, M. V., Fraser, A. R., Hillier, S., Dumat, C., & Staunton, S. (2000). The interactions between soil organic matter and soil clay minerals by selective removal and controlled addition of organic matter. European Journal of Soil Science, 51, 497–509 Online. doi:10.1111/j.13652389.2000.00325.x.

    Article  Google Scholar 

  • Chorover, J., & Amistadi, M. K. (2001). Reaction of forest floor organic matter at goethite, birnessite and smectite surfaces. Geochimica et Cosmochimica Acta, 65, 95–109.

    Article  CAS  Google Scholar 

  • Conceição, P. C., Dieckow, J., & Bayer, C. (2013). Combined role of no-tillage and cropping systems in soil carbon stocks and stabilization. Soil & Tillage Research, 129, 40–47.

    Article  Google Scholar 

  • Davarcioglu, B. (2011). Spectral characterization of non-clay minerals found in the clays (Central Anatolian-Turkey). International Journal of the Physical Sciences, 6(3), 511–522 Available online at http://www.academicjournals.org/IJPS, ISSN 1992 - 1950 ©2011 Academic Journals.

    CAS  Google Scholar 

  • Diko, M. L., & Ekosse, G. E. (2012). Physicochemical and mineralogical considerations of Ediki sandstone-hosted kaolin occurrence, South West Cameroon. International Journal of the Physical Sciences, 7(3), 501–507.

    CAS  Google Scholar 

  • Feller, C., & Beare, M. H. (1997). Physical control of soil organic matter dynamics in the tropics. Geoderma, 79, 69–116.

    Article  CAS  Google Scholar 

  • Franzluebbers, A. J., Haney, R. L., Hongs, F. M., & Zuberer, D. A. (1996). Active fractions of organic matter in soils with different texture. Soil Biololgy & Biochemhemistry, 28, 1367–1372.

    Article  CAS  Google Scholar 

  • Galantini, J. A., Senesi, N., Brunetti, G., & Rosell, R. (2004). Influence of texture on organic matter distribution and quality and nitrogen and sulphur status in semiarid Pampean grassland soils of Argentina. Geoderma, 123, 143–152.

    Article  CAS  Google Scholar 

  • Golchin, A., Oades, J. M., Skjemstad, J. O., & Clarke, P. (1994). Soil structure and carbon cycling. Australian Journal of Soil Research, 32, 1043–1068.

    Article  Google Scholar 

  • Harris, W., & White, G. N. (2008). Methods of Soil Analysis Part 5—Mineralogical Methods, Chapter 4 (pp.81–116). In A. L. Ulery, & L. R. Drees (Eds.), X-ray diffraction techniques for soil mineral identification. Madison, Wisconsin, USA: Soil Science Society of America, Inc.

    Chapter  Google Scholar 

  • Hasse, P. R. (1994). A textbook of soil analysis, 1st Indian reprint, CBS Publishers and Distributors Pvt. New Delhi: Ltd ISBN 978–81-239-1833-4.

    Google Scholar 

  • Hassink, J., Neutel, J., & deRuiter, P. C. (1994). C and N mineralization in sandy and loamy grassland soils: the role of microbes and microfauna. SoilBiology & Biochemistry, 26, 1565–1571.

    Article  CAS  Google Scholar 

  • Heine, K., & Völkel, J. (2010). Soil Clay minerals in Namibia and their significance for the terrestrial and marine past global change research. African Study Monographs Suppl, 40, 31–50 URL: jambo.africa.kyoto-u.ac.jp/kiroku/asm_suppl/abstracts/pdf/.../Heine.pdf. Accessed on 6 th November, 2014.

    Google Scholar 

  • Hua, K., Wang, D., Guo, X., & Guo, Z. (2014). Carbon sequestration efficiency of organic ammendments in a long-term experiment on a vertisol in Huang-HaiHai Plain in China. PloS One. doi:10.1371/journal.pone.0108594.

    Google Scholar 

  • Huang, P.-M., Wang, M.-K., & Chiu, C.-Y. (2005). Soil mineral–organic matter–microbe interactions: impacts on biogeochemical processes and biodiversity in soils. Pedobiologia, 49, 609–635.

    Article  CAS  Google Scholar 

  • Igwe, C. A., Zarei, M., & Stahr, K. (2013). Stability of aggregates of some weathered soils in south-eastern Nigeria in relation to their geochemical properties. Journal of Earth System Science, 122(5), 1283–1294.

    Article  CAS  Google Scholar 

  • Kaiser, K., Eusterhues, K., Rumpel, C., Guggenberger, G., & Kögel-Knabner, I. (2002). Stabilization of organic matter by soil minerals-investigations of density and particle-size fractions from two acid forest soils. Journal of Plant Nutrition & Soil Science, 165, 451–459.

    Article  CAS  Google Scholar 

  • Kirkby, C. A., Richardson, A. E., Wade, L. J., Passioura, J. B., Batten, G. D., Blanchard, C., et al. (2014). Nutrient availability limits carbon sequestration in arable soils. Soil Biology & Biochemistry., 68, 402–409. doi:10.1016/j.soilbio.2013.09.032.

    Article  CAS  Google Scholar 

  • Kögel-Knabner, I., Guggenberger, G., Kleber, M., Kandeler, E., Kalbitz, K., Scheu, S., et al. (2008). Review article, organo-mineral associations in temperate soils:integrating biology, mineralogy, and organic matter chemistry. Journal of Plant Nutrition & Soil Science, 171, 61–82.

    Article  Google Scholar 

  • Ladd, J. N., Foster, R. C., & Skjemstad, J. O. (1993). Soil structure: carbon and nitrogen metabolism. In: L. Brussaard, L. & Kooistra, M.J.(Ed.) Int. Workshop on methods of research on soil structure/soil biota interrelationships. Geoderma, 56, 401–434.

    Article  CAS  Google Scholar 

  • Madejovà, J. N., & Komadel, P. (2001). Baseline studies of the clay minerals society source clays: infrared methods. Clays and Clay Minerals, 49, 410–432.

    Article  Google Scholar 

  • Nayak, P. S., & Singh, B. K. (2007). Instrumental characterisation of clay by XRF, XRD and FTIR. Bulletin Mater Science, 30(3), 235–238.

    Article  CAS  Google Scholar 

  • Oades, J. (1988). The retention of organic matter in soils. Biogeochemistry, 5, 35–70.

    Article  CAS  Google Scholar 

  • Olphen, V. H., & Fripiat, J. J. (1979). Data handbook for clay materials and other non-metallic minerals, 1st edition, pergamon press. Oxford: UK.

    Google Scholar 

  • Peng, X., Yan, X., Zhou, H., Zhang, Y. Z., & Sun, H. (2015). Assessing the contributions of sesquioxides and soil organic matter to aggregation in an ultisol under long-term fertilization. Soil & Tillage Research, 146, 89–98.

    Article  Google Scholar 

  • Pironon, J., Pelletier, M., Donato, P. D., & Mosser-Ruck, R. (2003). Characterization of smectite and illite by FTIR spectroscopy of interlayer NH4+ cations. Clay Minerals, 38, 201–211.

    Article  CAS  Google Scholar 

  • Rabbi, S.M.F., Lockwood, P.V., Daniel, H. (2010). How do microaggregates stabilize soil organic matter? © 2010 19th World Congress of Soil Science, Soil Solutions for a Changing World 1–6 August 2010, Brisbane, Australia. pp 109–112, Published on DVD. URL:http://www.iuss.org/ 19th%20WCSS/Symposium/pdf/1617. Accessed on 26 March, 2014.

  • Ravisankar, R., Senthikumar, G., Kiruba, S., Chandrasekaran, A., & Jebakumar, P. P. (2010). Mineral analysis of costal sediments of Tuna, Gujrat, India. Indian Journal of Science and Technology, 3(7), 774–780.

    CAS  Google Scholar 

  • Sarkar, D., & Halder, A. (2010). Physical and chemical methods in soil analysis (2nd ed., ). New Age International Publishers: New Delhi ISBN 978–81-224-2725-7.

    Google Scholar 

  • Schraenbroch, B. C., Lloyd, J. E., & Maynard, J. L. J. (2005). Distinguishing urban soils with physical, chemical and biological properties. Pedobiologia, 49, 283–296.

    Article  Google Scholar 

  • Schroeder, P. A. (2002). Infrared spectroscopy in clay science. In A. Rule, & S. Guggenheim (Eds.), CMS Workshop Lectures, Teaching Clay Science (vol. 11, pp. 181–206). The Clay Mineral Society: Aurora, CO.

    Google Scholar 

  • Shoval, S., Yartiv, S., Michaelian, K. H., Boudeulle, M., & Panczer, G. (1999). Hydroxyl stretching Raman and infrared bands ‘A’ and ‘Z’ in spectra of kaolinites. Clay Minerals, 34, 551–563.

    Article  CAS  Google Scholar 

  • Six, J., & Paustian, K. (2014). Aggregate-associated soil organic matter as an ecosystem property and a measurement tool. Soil Biology & Biochemistry, 68, A4–A9.

    Article  CAS  Google Scholar 

  • Spaccini, R., Piccolo, A., Conte, P., Haberhauer, G., & Gerzabek, M. H. (2002). Increased soil organic carbon sequestration through hydrophobic protection by humic substances. Soil Biology & Biochemistry, 34, 1839–1851.

    Article  CAS  Google Scholar 

  • Sparks, D. L. (2003). Environmental soil chemistry (2nd ed., ). Academic Press: Boston.

    Google Scholar 

  • Stewart, C. E., Paustian, K., Conant, R. T., Plante, A. F., & Six, J. (2009). Soil carbon saturation: implications for measurable carbon pool dynamics in long-term incubations. Soil Biology and Biochemistry, 41, 357–366.

    Article  CAS  Google Scholar 

  • Vaculikova, L., & Plevova, E. (2005). Identification of clay minerals and micas in sedimentary rocks. Acta Geodamica et Geomaterialia, 2(138), 167–175.

    Google Scholar 

  • Wang, W., Sardans, J., Zeng, C., Zhong, C., Li, Y., & Peñuelas, J. (2014a). Responses of soil nutrient concentrations and stoichiometry to different human land uses in a subtropical tidal wetland. Geoderma, 232–234, 459–470.

    Article  Google Scholar 

  • Wang, H., Guan, D., Zhang, R., Chen, Y., Hu, Y., & Xiao, L. (2014b). Soil aggregates and organic carbon affected by the land use change from rice paddy to vegetable field. Ecological Engineering, 70, 206–211.

    Article  Google Scholar 

  • Wiseman, C. L. S., & Püttmann, W. (2006). Interactions between mineral phases in preservation of soil organic matter. Geoderma, 134, 109–118.

    Article  CAS  Google Scholar 

  • Zotarelli, L., Alves, B. J. R., Urquiaga, S., Boddey, R. M., & Six, J. (2007). Impact of tillage and crop rotation on light fraction and intra-aggregate soil organic matter in two oxisols. Soil & Tillage Research, 95, 196–206.

    Article  Google Scholar 

Download references

Acknowledgments

This work was carried out under the Faculty Improvement Programme of University Grants Commission, New Delhi, India, to one of the authors (GA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishna G. Bhattacharyya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adhikari, G., Bhattacharyya, K.G. Correlation of soil organic carbon and nutrients (NPK) to soil mineralogy, texture, aggregation, and land use pattern. Environ Monit Assess 187, 735 (2015). https://doi.org/10.1007/s10661-015-4932-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4932-5

Keywords

Navigation