Skip to main content

Advertisement

Log in

Ionic-liquid-based hollow-fiber liquid-phase microextraction method combined with hybrid artificial neural network-genetic algorithm for speciation and optimized determination of ferro and ferric in environmental water samples

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

A novel and environmentally friendly ionic-liquid-based hollow-fiber liquid-phase microextraction method combined with a hybrid artificial neural network (ANN)–genetic algorithm (GA) strategy was developed for ferro and ferric ions speciation as model analytes. Different parameters such as type and volume of extraction solvent, amounts of chelating agent, volume and pH of sample, ionic strength, stirring rate, and extraction time were investigated. Much more effective parameters were firstly examined based on one-variable-at-a-time design, and obtained results were used to construct an independent model for each parameter. The models were then applied to achieve the best and minimum numbers of candidate points as inputs for the ANN process. The maximum extraction efficiencies were achieved after 9 min using 22.0 μL of 1-hexyl-3-methylimidazolium hexafluorophosphate ([C6MIM][PF6]) as the acceptor phase and 10 mL of sample at pH = 7.0 containing 64.0 μg L−1 of benzohydroxamic acid (BHA) as the complexing agent, after the GA process. Once optimized, analytical performance of the method was studied in terms of linearity (1.3–316 μg L−1, R 2 = 0.999), accuracy (recovery = 90.1–92.3 %), and precision (relative standard deviation (RSD) <3.1). Finally, the method was successfully applied to speciate the iron species in the environmental and wastewater samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anthemidis, A. N., Zachariadis, G. A., & Stratis, J. A. (2003). Development of an on-line solvent extraction system for electrothermal atomic absorption spectrometry utilizing a new gravitational phase separator determination of cadmium in natural waters and urine samples. Journal of Analytical at Spectrometry, 18, 1400–1403.

    Article  CAS  Google Scholar 

  • Barfi, B., Asghari, A., Rajabi, M., Sabzalian, S., Khanalipoor, F., & Behzad, M. (2015a). Optimized syringe-assisted dispersive micro solid phase extraction coupled with microsampling flame atomic absorption spectrometry for the simple and fast determination of potentially toxic metals in fruit juice and bio-fluid samples. RSC Advances, 5, 31930–31941.

    Article  CAS  Google Scholar 

  • Barfi, B., Asghari, A., Rajabi, M., Goochani Moghadam, A., Mirkhani, N., & Ahmadi, F. (2015b). Comparison of ultrasound-enhanced air-assisted liquid–liquid microextraction and low-density solvent-based dispersive liquid–liquid microextraction methods for determination of nonsteroidal anti-inflammatory drugs in human urine samples. Journal of Pharmaceutical and Biomedical Analysis, 111, 297–305.

    Article  CAS  Google Scholar 

  • Barfi, B., Asghari, A., Rajabi, M., & Sabzalian, S. (2015c). Organic solvent-free air-assisted liquid–liquid microextraction for optimized extraction of illegal azo-based dyes and their main metabolite from spices, cosmetics and human bio-fluid samples in one step. Journal of Chromatography B, 999, 15–25.

    Article  Google Scholar 

  • Bautista-Flores, A. N., de San Miguel, E. R., de Gyves, J., & Jönsson, J. Å. (2010). Optimization, evaluation, and characterization of a hollow fiber supported liquid membrane for sampling and speciation of lead (II) from aqueous solutions. Journal of Membrane Science, 363, 180–187.

    Article  CAS  Google Scholar 

  • Bousejera-ElGarah, F., Bijani, C., Coppel, Y., Faller, P., & Hureau, C. (2011). Iron(II) binding to amyloid-β, the Alzheimer’s peptide. Inorganic Chemistry, 50, 9024–9030.

    Article  Google Scholar 

  • Bridle, K. R., Frazer, D. M., & Wilkins, S. J. (2003). Disrupted hepcidin regulation in HFE-associated haemochromatosis and the liver as a regulator of body iron homoeostasis. Lancet, 361, 669–673.

    Article  CAS  Google Scholar 

  • Chen, C., & Ramaswamy, H. (2002). Modeling and optimization of variable retort temperature (VRT) thermal processing using coupled neural networks and genetic algorithms. Journal of Food Engineering, 53, 209–220.

    Article  Google Scholar 

  • Citak, D., & Tuzen, M. (2010). A novel preconcentration procedure using cloud point extraction for determination of lead, cobalt and copper in water and food samples using flame atomic absorption spectrometry. Food and Chemical Toxicology, 48, 1399–1404.

    Article  CAS  Google Scholar 

  • Cook, D., Ragsdale, C., & Major, R. (2000). Combining a neural network with a genetic algorithm for process parameter optimization. Engineering Applications of Artificial Intelligence, 13, 391–396.

    Article  Google Scholar 

  • Crichton, R. R., Dexter, D., & Ward, R. J. (2008). Metal based neurodegenerative diseases—from molecular mechanisms to therapeutic strategies. Coordination Chemistry Reviews, 252, 1189–1199.

    Article  CAS  Google Scholar 

  • Garcia-Marco, S., Torreblanca, A., & Lucena, J. (2006). Chromatographic determination of Fe chelated by ethylenediamine-N-(o-hydroxyphenylacetic)-N'-(p-hydroxyphenylacetic) acid in commercial EDDHA/Fe3+ fertilizers. Journal of Agricultural and Food Chemistry, 54, 1380–1386.

    Article  CAS  Google Scholar 

  • Ghaedi, M., Mortazavi, K., Montazerozohori, M., Shokrollahi, A., & Soylak, M. (2013a). Flame atomic absorption spectrometric (FAAS) determination of copper, iron and zinc in food samples after solid-phase extraction on Schiff base-modified duolite XAD 761. Materials Science and Engineering C, 33, 2338–2344.

    Article  CAS  Google Scholar 

  • Ghaedi, M., Niknam, K., Zamani, S., Abasi-Larki, H., Roosta, M., & Soylak, M. (2013b). Silica chemically bonded N-propyl kriptofix 21 and 22 with immobilized palladium nanoparticles for solid phase extraction and preconcentration of some metal ions. Materials Science and Engineering C, 33, 3180–3189.

    Article  CAS  Google Scholar 

  • Gharahbagh, A. A., & Abolghasemi, V. (2008). A novel accurate genetic algorithm for multivariable systems. World Applied Sciences Journal, 5, 137–142.

    Google Scholar 

  • Ghasemi, E., Najafi, N. M., Raofie, F., & Ghassempour, A. (2010). Simultaneous speciation and preconcentration of ultra traces of inorganic tellurium and selenium in environmental samples by hollow fiber liquid phase microextraction prior to electrothermal atomic absorption spectroscopy determination. Journal of Hazardous Materials, 181, 491–496.

    Article  CAS  Google Scholar 

  • Giokas, D. L., Paleologos, E. K., & Karayannis, M. I. (2002). Speciation of Fe (II) and Fe (III) by the modified ferrozine method, FIA–spectrophotometry, and flame AAS after cloud-point extraction. Analytical and Bioanalytical Chemistry, 373, 237–243.

    Article  CAS  Google Scholar 

  • Grotti, M., Abelmoschi, M. L., Soggia, F., & Frache, R. (2003). Determination of ultratrace elements in natural waters by solid-phase extraction and atomic spectrometry methods. Analytical and Bioanalytical Chemistry, 375, 242–247.

    CAS  Google Scholar 

  • Guo, X., He, M., Chen, B., & Hu, B. (2012). Phase transfer hollow fiber liquid phase microextraction combined with electrothermal vaporization inductively coupled plasma mass spectrometry for the determination of trace heavy metals in environmental and biological samples. Talanta, 101, 516–523.

    Article  CAS  Google Scholar 

  • Hauser, C. R., & Renfrow, W. B. (1943). Benzohydroxamic acid. Organic Synthesis, 2, 67.

    Google Scholar 

  • Indiani, C., Santoni, E., Becucci, M., Boffi, A., Fukuyama, K., & Smulevich, G. (2003). New Insight into the peroxidase-hydroxamic acid interaction revealed by the combination of spectroscopic and crystallographic studies. Biochemistry, 42, 14066–14074.

    Article  CAS  Google Scholar 

  • Jiang, X. M., & Lee, H. K. (2004). Solvent bar microextraction. Analytical Chemistry, 76, 5591–5596.

    Article  CAS  Google Scholar 

  • Kaplan, C. D., & Kaplan, J. (2009). Iron acquisition and transcriptional regulation. Chemical Reviews, 109, 4536–4552.

    Article  CAS  Google Scholar 

  • Kozlowski, H., Janicka-Klos, A., Brasun, J., Gaggelli, E., Valensin, D., & Valensin, G. (2009). Copper, iron, and zinc ions homeostasis and their role in neurodegenerative disorders (metal uptake, transport, distribution and regulation). Coordination Chemistry Reviews, 253, 2665–2685.

    Article  CAS  Google Scholar 

  • López-García, I., Rivas, R. E., & Hernández-Córdoba, M. (2012). Hollow fiber based liquid-phase microextraction for the determination of mercury traces in water samples by electrothermal atomic absorption spectrometry. Analytica Chimica Acta, 743, 69–74.

    Article  Google Scholar 

  • Mashhadizadeh, M. H., Azimi, M. S., Pesteh, M., Sheikhshoaei, I., Ardakani, M. M., & Karimi, M. A. (2008). Flame atomic absorption spectrometric determination of μg amounts of Fe (III) ions after solid phase extraction using modified octadecyl silica membrane disks. Spectrochimica Acta B, 63, 889–892.

    Article  Google Scholar 

  • Miller, M. J. (1989). Syntheses and therapeutic potential of hydroxamic acid based siderophores and analogs. Chemical Reviews, 89, 1563–1579.

    Article  CAS  Google Scholar 

  • Moghadam, M. R., Shabani, A. M. H., & Dadfarnia, S. (2011). Spectrophotometric determination of iron species using a combination of artificial neural networks and dispersive liquid–liquid microextraction based on solidification of floating organic drop. Journal of Hazardous Materials, 197, 176–182.

    Article  CAS  Google Scholar 

  • Monzyk, B., & Crumbliss, A. L. (1980). Acid dissociation constants (Ka) and their temperature dependencies (AHa, ASa) for a series of carbon- and nitrogen-substituted hydroxamic acids in aqueous solution. Journal of Organic Chemistry, 45, 4670–4675.

    Article  CAS  Google Scholar 

  • Nagai, T., Imai, A., Matsushige, K., Yokoi, K., & Fukushima, T. (2007). Dissolved iron and its speciation in a shallow eutrophic lake and its inflowing rivers. Water Research, 41, 775–784.

    Article  CAS  Google Scholar 

  • Pedersen-Bjergaard, S., & Rasmussen, K. E. (1999). Liquid–liquid–liquid microextraction for sample preparation of biological fluids prior to capillary electrophoresis. Analytical Chemistry, 71, 2650–2656.

    Article  CAS  Google Scholar 

  • Rasmussen, K. E., & Pedersen-Bjergaard, S. (2004). Developments in hollow fiber based liquid-phase microextraction. Trends in Analytical Chemistry, 23, 1–10.

    Article  CAS  Google Scholar 

  • Saçmacı, Ş., & Kartal, Ş. (2008). Selective extraction, separation and speciation of iron in different samples using 4-acetyl-5-methyl-1-phenyl-1-H-pyrazole-3-carboxylic acid. Analytica Chimica Acta, 623, 46–52.

    Article  Google Scholar 

  • Shemirani, F., & Yousefi, S. R. (2007). Selective extraction and preconcentration of cerium (IV) in water samples by cloud point extraction and determination by inductively coupled plasma optical emission spectrometry. Microchimica Acta, 157, 223–227.

    Article  CAS  Google Scholar 

  • Soylak, M., & Aydin, A. (2011). Determination of some heavy metals in food and environmental samples by flame atomic absorption spectrometry after coprecipitation. Food and Chemical Toxicology, 49, 1242–1248.

    Article  CAS  Google Scholar 

  • Stalikas, C., Fiamegos, Y., Sakkas, V., & Albanis, T. (2009). Developments on chemometric approaches to optimize and evaluate microextraction. Journal of Chromatography A, 1216, 175–189.

    Article  CAS  Google Scholar 

  • Tabrizi, A. B. (2010). Development of a dispersive liquid–liquid microextraction method for iron speciation and determination in different water samples. Journal of Hazardous Materials, 183, 688–693.

    Article  CAS  Google Scholar 

  • Theil, E. C., & Goss, G. J. (2009). Living with iron (and oxygen): questions and answers about iron homeostasis. Chemical Reviews, 109, 4568–4579.

    Article  CAS  Google Scholar 

  • Ullah, N., Tuzen, M., Gul Kazi, T., Citak, D., & Soylak, M. (2013). Pressure-assisted ionic liquid dispersive microextraction of vanadium coupled with electrothermal atomic absorption spectrometry. Journal of Analytical at Spectrometry, 28, 1441–1445.

    Article  Google Scholar 

  • Vega, F. A., & Weng, L. (2013). Speciation of heavy metals in River Rhine. Water Research, 47, 363–372.

    Article  CAS  Google Scholar 

  • Villar-Navarro, M., Ramos-Payán, M., Fernández-Torres, R., Callejón-Mochón, M., & Bello-López, M. Á. (2013). A novel application of three phase hollow fiber based liquid phase microextraction (HF-LPME) for the HPLC determination of two endocrine disrupting compounds (EDCs), n-octylphenol and n-nonylphenol, in environmental waters. Science of the Total Environment, 443, 1–6.

    Article  CAS  Google Scholar 

  • Wen, X., Deng, Q., Guo, J., & Yang, S. (2011). Ionic liquid-based single drop microextraction of ultra-trace copper in food and water samples before spectrophotometric determination. Spectrochimica Acta A, 79, 1941–1945.

    Article  CAS  Google Scholar 

  • Wu, J., & Boyle, E. A. (1998). Determination of iron in seawater by high-resolution isotope dilution inductively coupled plasma mass spectrometry after Mg(OH)2 coprecipitation. Analytica Chimica Acta, 367, 183–191.

    Article  CAS  Google Scholar 

  • Yaman, M., & Kaya, G. (2005a). Speciation of iron (II) and (III) by using solvent extraction and flame atomic absorption spectrometry. Analytica Chimica Acta, 540, 77–81.

    Article  CAS  Google Scholar 

  • Yaman, M., & Kaya, G. (2005b). Speciation of iron (II) and (III) by using solvent extraction and flame atomic absorption spectrometry. Analytica Chimica Acta, 540, 77–81.

    Article  CAS  Google Scholar 

  • Zeng, C. J., Wen, X. D., Tan, Z. Q., Cai, P. Y., & Hou, X. D. (2010). Hollow fiber supported liquid membrane extraction for ultrasensitive determination of trace lead by portable tungsten coil electrothermal atomic absorption spectrometry. Microchemical Journal, 96, 238–242.

    Article  CAS  Google Scholar 

  • Zeng, C., Lin, Y., Zhou, N., Zheng, J., & Zhang, W. (2012). Room temperature ionic liquids enhanced the speciation of Cr (VI) and Cr (III) by hollow fiber liquid phase microextraction combined with flame atomic absorption spectrometry. Journal of Hazardous Materials, 237, 365–370.

    Article  Google Scholar 

  • Zhang, Y., Duan, J., He, M., Chen, B., & Hu, B. (2013). Dispersive liquid liquid microextraction combined with electrothermal vaporization inductively coupled plasma mass spectrometry for the speciation of inorganic selenium in environmental water samples. Talanta, 115, 730–736.

    Article  CAS  Google Scholar 

  • Zhao, L., Zhong, S., Fang, K., Qian, Z., & Chen, J. (2012). Determination of cadmium(II), cobalt(II), nickel(II), lead(II), zinc(II), and copper(II) in water samples using dual-cloud point extraction and inductively coupled plasma emission spectrometry. Journal of Hazardous Materials, 239, 206–212.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Semnan University Research Council for financial support of this work. The authors also would like to especially thank Miss S. Sabzalian, Department of Chemistry, Semnan University, Semnan, Iran.

Conflict of interest

The authors declare no competing financial interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behruz Barfi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saeidi, I., Barfi, B., Asghari, A. et al. Ionic-liquid-based hollow-fiber liquid-phase microextraction method combined with hybrid artificial neural network-genetic algorithm for speciation and optimized determination of ferro and ferric in environmental water samples. Environ Monit Assess 187, 631 (2015). https://doi.org/10.1007/s10661-015-4860-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4860-4

Keywords

Navigation