Skip to main content

Advertisement

Log in

Integrating three tools for the environmental assessment of the Pardo River, Brazil

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

There is a growing need for strategic assessment of environmental conditions in river basins around the world. In spite of the considerable water resources, Brazil has been suffering from water quality decrease in recent years. Pardo River runs through Minas Gerais and São Paulo, two of the most economically important states in Brazil, and is being currently promoted as a future drinking water source. This study aimed at integrating three different tools to conduct a hydromorphological assessment focused on the spatial complexity, connectivity, and dynamism of the Pardo River, Brazil. Twelve sampling stretches were evaluated in four sampling campaigns, in dry and rainy seasons. In each stretch, permanent preservation areas (PPAs), hydromorphological integrity by rapid assessment protocol (RAP), and physicochemical parameters were qualified. The kappa coefficient was used to assess statistical agreement among monitoring tools. The PPA analysis showed that in all stretches, the vegetation was modified. RAP results revealed environmental deterioration in stretches located near human activities and less variability of substrates available for aquatic fauna and sediment deposition as well. Low values for dissolved oxygen in the river mouth were noted in the rainy season. Electrical conductivity was higher in stretches near sugarcane crops. The poor agreement (k < 0.35) between the RAP and physicochemical parameters indicates that the tools generate different and complementary information, while they are not replaceable. Potential changes of the hydromorphological characteristics and variations in physicochemical indicators must be related to extensive PPA modification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adeyemo, O. K. (2008). Habitat assessment for seasonal variation of river pollution in Ibadan, Nigeria, in a geographic information systems interface. Veterinaria Italiana, 44, 361–371.

    Google Scholar 

  • Alcamo, J., Döll, P., Henrichs, T., Kaspar, F., Lehner, B., Rösch, T., & Siebert, S. (2003). Global estimates of water withdrawals and availability under current and future “business-as-usual” conditions. Hydrological Sciences Journal, 48, 339–348.

    Article  Google Scholar 

  • Allan, J. D. (2004). Landscapes and riverscapes: the influence of land use on stream ecosystems. Annual Review of Ecology and Systematics, 35, 84–257.

    Google Scholar 

  • Alves, R. I. S., Sampaio, C. F., Nadal, M., Schuhmacher, M., Domingo, J. L., & Segura-Muñoz, S. I. (2014). Metal concentrations in surface water and sediments from Pardo River, Brazil: Human health risks. Environmental Research, 133, 55–149.

    Article  Google Scholar 

  • Blevins, Z. W., E. L., Effert, D. H., Wahlb & C. D., Suskia (2013). Land use drives the physiological properties of a stream fish. Ecological Indicators, 224–235.

  • Brion, G., Brye, K. R., Haggard, B. E., West, C., & Brahana, J. V. (2011). Land-use effects on water quality of a first-order stream in the Ozark Highlands, mid-southern United States. River Research and Applications, 27, 772–790.

    Article  Google Scholar 

  • Carpenter, S. R., Caraco, N. F., Correl, D. L., Howarth, R. W., Sharpley, A. N., & Smith, V. H. (1998). Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological Applications, 8, 559–568.

    Article  Google Scholar 

  • Comitê de Bacias Hidrográficas do Rio Pardo (CBH-Pardo) (2013). Relatório de situação dos recursos hídricos da bacia hidrográfica 2013 (ano base 2012)/Comitê da Bacia Hidrográfica do Pardo; Grupo de Trabalho Permanente do Relatório Anual de Situação dos Recursos Hídricos e Plano de Bacia/UGRHI-4 Pardo - Ribeirão Preto 67.

  • Conselho Nacional do Meio Ambiente (CONAMA) (2005). Resolução n°357, de 17 de março de 2005. Dispõe sobre a classificação dos corpos de água e diretrizes ambientais para o seu enquadramento, bem como estabelece as condições e padrões de lançamento de efluentes, e dá outras providencias. Diário Oficial da União, Brasília.

  • Cooke, H. A., & Zack, S. (2009). Use of standardized visual assessments of riparian and stream condition to manage riparian bird habitat in Eastern Oregon. Environmental Management, 44, 173–184.

    Article  Google Scholar 

  • Corbi, J. J., Strixino, S. T., Santos, A., & Del Grande, M. (2006). Diagnóstico ambiental de metais e organoclorados em córregos adjacentes a áreas de cultivo de cana-de-açúcar (Estado de São Paulo, Brasil). Quimica Nova, 29, 61–65.

    Article  Google Scholar 

  • Da Silva, A. R. I., Oliveira, C. O., Abreu, T. K. A., Julião, F. C., Trevilato, T. M. B., & Segura-Muñoz, S. I. (2013). Water quality of the Ribeirão Preto Stream, a watercourse under anthropogenic influence in the southeast of Brazil. Environmental Monitoring and Assessment, 185, 61–1151.

    Google Scholar 

  • Elosegi, A., & Sabater, S. (2013). Effects of hydromorphological impacts on river ecosystem functioning: a review and suggestions for assessing ecological impacts. Hydrobiologia, 712, 129–143.

    Article  Google Scholar 

  • Elosegi, A., Díez, J., & Mutz, M. (2010). Effects of hydromorphological integrity on biodiversity and functioning of river ecosystems. Hydrobiologia, 657, 199–215.

    Article  Google Scholar 

  • Fagundes, N. A., & Gastal Júnior, C. V. S. (2008). Diagnóstico ambiental e delimitação de Áreas de Preservação Permanente em um assentamento rural. Acta Scientiarum, Biological Sciences, 30, 29–38.

    Article  Google Scholar 

  • Falcone, J. A., Carlisle, D. M., & Weber, L. C. (2010). Quantifying human disturbance in watersheds: variable selection and performance of a GIS-based disturbance index for predicting the biological condition of perennial streams. Ecological Indicators, 10, 264–273.

    Article  Google Scholar 

  • Fernandes, J. G., Freire, M. B. G. S., Cunha, J. C., Galvíncio, J. D., Correia, M. M., & Santos, P. R. (2009). Quality of the water for irrigation in the Irrigated Perimeter Cachoeira II in the municipality of Serra Talhada/PE. Revista Brasileira de Ciências Agrárias, 4, 27–34.

    Article  Google Scholar 

  • Flotemersch, J. E., J. B., Stribling, M. J., Paul (2006). Concepts and approaches for the bioassessment of non-wadeable streams and rivers. US Environmental Protection Agency, Office of Research and Development.

  • Flotemersch, J. E., Stribling, J. B., Hughes, R. M., Reynolds, L., Paul, M. J., & Wolter, C. (2011). Site length for biological assessment of boatable rivers. River Research and Applications, 27, 520–535.

    Article  Google Scholar 

  • Fu, B., & Burgher, I. (2015). Riparian vegetation NDVI dynamics and its relationship with climate, surface water and groundwater. Journal of Arid Environments, 113, 59–68.

    Article  Google Scholar 

  • Gorayeb, A. M. A., Lombardo, & Pereira, L. C. C., (2010). Qualidade da água e abastecimento na Amazônia: o exemplo da Bacia Hidrográfica do Rio Caeté. Mercator, 9, 135–157.

    Article  Google Scholar 

  • Government of Brazil (1997). National Water Policy, Lei n° 9.433, de 8 de janeiro de 1997. Diário Oficial da União, Brasília.

  • Government of Brazil (2010). National Solid Waste Policy, Lei n° 12.305, de 2 de Agosto de 2010. Diário Oficial da União, Brasília.

  • Government of Brazil (2012). Brazilian Forest Code, Lei n° 12.651, de 25 de maio de 2012. Diário Oficial da União, Brasília.

  • Hansen, B. D., Reich, P., Cavagnaro, R. T. R., & Lake, P. S. (2015). Challenges in applying scientific evidence to width recommendations for riparian management in agricultural Australia. Ecological Management & Restoration, 16, 50–57.

    Article  Google Scholar 

  • Henry, R. (2009). Annual changes in sediment entrapment efficiency in lakes lateral to a river (Paranapanema River, São Paulo, Brazil). Acta Limnologica Brasiliensia, 21, 25–34.

    Google Scholar 

  • Instituto Brasileiro de Geografia e Estatística (IBGE) (2014). Cidades. Ribeirão Preto, São Paulo. Database: http://cidades.ibge.gov.br/xtras/perfil.php?codmun=354340.

  • Integrated Center for Agrometeorological Information (CIIAGRO) (2012). Ciiagro Online. Database: http://www.ciiagro.sp.gov.br/ciiagroonline.

  • Khan, F. A., Naushin, F., Rehman, F., Masoodi, A., Irfan, M., Hashmi, F., & Ansari, A. A. (2014). Eutrophication: global scenario and local threat to dynamics of aquatic ecosystems, eutrophication: causes, consequences and control. Springer, 2, 17–27.

    Google Scholar 

  • Lisboa, L. K., Silva, A. L. L., & Petrucio, M. M. (2011). Aquatic invertebrate’s distribution in a freshwater coastal lagoon of southern Brazil in relation to water and sediment characteristics. Acta Limnologica Brasiliensia, 23, 119–127.

    Article  Google Scholar 

  • Lorz, C. G., Abbt-Braun, F., Bakker, P., Borges, H., Bornick, L., Fortes, F. H., et al. (2012). Challenges of an integrated water resource management for the Distrito Federal, Western Central Brazil: climate, land-use and water resources. Environmental Earth Sciences, 65, 1575–1586.

    Article  Google Scholar 

  • Maloney, K. O., & Weller, D. E. (2011). Anthropogenic disturbance and streams: land use and land-use change affect stream ecosystems via multiple pathways. Freshwater Biology, 56, 611–626.

    Article  Google Scholar 

  • Nigel, R., Chokmani, K., Novoa, J., Rousseau, A. N., & Alem, A. E. (2014). An extended riparian buffer strip concept for soil conservation and stream protection in an agricultural riverine area of the La Chevrotière River watershed, Québec, Canada, using remote sensing and GIS techniques. Canadian Water Resources Journal, 39, 285–301.

    Article  Google Scholar 

  • Oyugi, D. O., Mavuti, K. M., Aloo, P. A., Ojuok, J. E., & Britton, J. R. (2014). Fish habitat suitability and community structure in the equatorial Lake Naivasha, Kenya. Hydrobiologia, 727, 51–63.

    Article  Google Scholar 

  • Poma, H. R., Cacciabue, D. G., Garcé, B., Gonzo, E. E., & Rajal, V. B. (2012). Towards a rational strategy for monitoring of microbiological quality of ambient waters. Science of the Total Environment, 433, 98–109.

    Article  CAS  Google Scholar 

  • Ragosta, G., Evensen, C., Atwill, E. R., Walker, M., Ticktin, T., Asquith, A., & Tate, K. (2010). Causal connections between water quality and land use in a rural tropical island watershed. EcoHealth, 7, 105–113.

    Article  Google Scholar 

  • Rixen, T., Baum, A., Sepryani, H., Pohlmann, T., Jose, C., & Samiaji, J. (2010). Dissolved oxygen and its response to eutrophication in a tropical black water river. Journal of Environmental Management, 91, 1730–1737.

    Article  CAS  Google Scholar 

  • Roach, K. A., Winemiller, K. O., & Davis, S. E. (2014). Autochthonous production in shallow littoral zones of five floodplain rivers: effects of flow, turbidity and nutrients. Freshwater Biology, 59, 1278–1293.

    Article  CAS  Google Scholar 

  • Rodrigues, A. S. L., & Castro, P. T. A. (2008). Adaptation of a rapid assessment protocol for rivers on rocky meadows. Acta Limnologica Brasiliensia, 20, 291–303.

    Google Scholar 

  • Rodrigues, A. S. L., Malafaia, G., & Castro, P. T. A. (2010). A importância da avaliação do habitat no monitoramento da qualidade dos Recursos Hídricos: uma revisão. SaBios-Revista de Saúde e Biologia, 5, 26–42.

    Google Scholar 

  • Rodrigues, A. S. L., Malafaia, G., Costa, A. T., & Nalini-Junior, H. A. (2012). Adaptation and applicability assessment of a Rapid Assessment Protocol for the Gualaxo do Norte river basin, East-Southeast of the Quadrilátero Ferrífero, MG, Brazil. Ambi-Agua, 7, 231–244.

    Article  Google Scholar 

  • Seganfredo, M. A., I. J., Soares & C. S., Klein (2003). Qualidade da água de rios numa região de pecuária intensiva de SC. Concórdia, Embrapa. Comunicado Técnico: 4.

  • Silva, M. S. G. M., Queiroz, J. F., Cesnik, R., Ferraz, J. M. G., & Moraes, J. F. (2010). Assessment of Oriçanga and Itupeva rivers water quality at the Pardo-Mogi watershed (São Paulo State, Brazil). Acta Limnologica Brasiliensia, 22, 335–343.

    Article  Google Scholar 

  • Souza, B. D., & Fernandes, V. O. (2009). Estrutura e dinâmica da comunidade fitoplanctônica e sua relação com as variáveis ambientais na lagoa Mãe-Bá, Estado do Espírito Santo, Brasil. Acta Scientiarum. Biological Sciences, 31, 245–253.

    Google Scholar 

  • Sweeney, B. W., & Newbold, J. D. (2014). Streamside forest buffer width needed to protect stream water quality, habitat, and organisms: a literature review. Journal of the American Water Resources Association, 50, 560–584.

    Article  Google Scholar 

  • Tran, C. P., Bode, R. W., Smith, A. J., & Kleppel, G. S. (2010). Land-use proximity as a basis for assessing stream water quality in New York State (USA). Ecological Indicators, 10, 727–733.

    Article  CAS  Google Scholar 

  • Tucci, C. E. M. (2008). Urban waters. Estudos Avançados, 22, 97–111.

    Article  Google Scholar 

  • Ulnikovic, V. P., Vukic, M., & Milutinovic-Nikolic, A. (2013). Analysis of solid waste from ships and modeling of its generation on the river Danube in Serbia. Waste Management Research, 31, 24–618.

    Google Scholar 

  • Urbanič, G. (2014). Hydromorphological degradation impact on benthic invertebrates in large rivers in Slovenia. Hydrobiologia, 729, 191–207.

    Article  Google Scholar 

  • Viera, A. J., & Garrett, J. M. (2005). Understanding interobserver agreement: the kappa statistic. Family Medicine, 37, 360–363.

    Google Scholar 

  • Walling, D. E. (2006). Human impact on land–ocean sediment transfer by the world's rivers. Geomorphology, 79, 192–216.

    Article  Google Scholar 

  • Wang, R., Xu, T., Yu, L., Zhu, J., & Li, X. (2012). Effects of land use types on surface water quality across an anthropogenic disturbance gradient in the upper reach of the Hun River, Northeast China. Environmental Monitoring and Assessment, 185, 4141–51.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Council for Scientific and Technological Development (CNPq), the São Paulo Research Foundation (FAPESP) (Grants 2010/50226-7 and 2013/07238-2), the State Water Resources Fund (FEHIDRO), Brazil (Grant SINFEHIDRO: PARDO 105/2013), and the Spanish Agency for International Cooperation and Development (AECID), Spain (Grants A/025409/09 and A/032274/10). The author thanks Dr. Isabel C. M. Freitas (University of São Paulo) for statistical assistance. All authors have contributed to this manuscript and are aware of the paper content.

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susana I. Segura-Muñoz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Machado, C.S., Alves, R.I.S., Fregonesi, B.M. et al. Integrating three tools for the environmental assessment of the Pardo River, Brazil. Environ Monit Assess 187, 569 (2015). https://doi.org/10.1007/s10661-015-4788-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4788-8

Keywords

Navigation