Skip to main content

Advertisement

Log in

A modeling approach for agricultural water management in citrus orchards: cost-effective irrigation scheduling and agrochemical transport simulation

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The water flow and the mass transport of agrochemicals in the unsaturated and saturated zone were simulated in the extended alluvial basin of Keritis river in Crete, Greece (a predominantly flat and most productive citrus growing area) using the hydrological model MIKE SHE. This model was set up based on information on land use, geology, soil structure, meteorological data, as well as groundwater level data from pumping wells. Additionally, field measurements of the soil moisture at six different locations from three soil depths (0.1, 0.2, and 0.3 m) were used as targets to calibrate and validate the unsaturated flow model while for saturated condition, groundwater level data from three well locations were used. Following the modeling approach, the agrochemical mass transport simulation was performed as well, based on different application doses. After the successful calibration processes, the obtained 1D modeling results of soil moisture-pressure related to soil depth at different locations were used to design a proper and cost-effective irrigation programme (irrigation timing, frequency, application rates, etc.) for citrus orchards. The results of the present simulation showed a very good correlation with the field measurements. Based on these results, a proper irrigation plan can be designed at every site of the model domain reducing the water consumption up to 38 % with respect to the common irrigation practices and ensuring the citrus water productivity. In addition, the effect of the proposed irrigation scheduling on citrus yield was investigated. Regarding the agrochemical concentration in the groundwater for all dose cases was below the maximum permissible limit. The only exception was for the highest dose in areas where the water table is high. Thus, this modeling approach could be used as a tool for appropriate water management in an agricultural area estimating at each time and location the availability of soil water, contributing to a cost-effective irrigation plan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abramowitz, M., & Stegeun, I.A. (2012). Engineering statistics Handbook.3.3.24 NISTSEMATECH E-Handbook of Statistical Methods (accessed February 2014), National Institute of Science and Technology.

  • Ahangar, G. A., & Shabani, A. (2014). Predicting soil sorption coefficients of an environmental pollutant herbicide (Diuron) using a neural network model. Health Scope, 3(2), e14197.

    Google Scholar 

  • Alister, C., & Kogan, M. (2010). Rainfall effect on dissipation and movement of Diuron and simazine in a vineyard soil. Planta Daninha, 28, 1059–1071.

    Article  Google Scholar 

  • Allison, F. E. (1996). The fate of nitrogen applied to soils. Advances in Agronomy, 18, 219–258.

    Article  Google Scholar 

  • Alva, A. K., Paramasivam, S., Obreza, T. A., & Schumann, A. W. (2006). Nitrogen best management practice for citrus trees I. fruit yield, quality, and leaf nutritional status. Scientia Horticulturae, 107, 233–244.

    Article  CAS  Google Scholar 

  • Anderson, M. P., & Woessner, W. W. (1992). Applied groundwater modeling, simulation of flow and advective transport. New York: Academic.

    Google Scholar 

  • Balland, V., Pollacco, J. A. P., & Arp, P. A. (2008). Modeling soil hydraulic properties for a wide range of soil conditions. Ecological Modelling, 219(3–4), 300–316.

    Article  Google Scholar 

  • Besharat, S., Nazemi, A. H., & Sadraddini, A. A. (2010). Parametric modeling of root length density and root water uptake in unsaturated soil. Turkish Journal of Agriculture and Forestry, 34, 439–449.

    Google Scholar 

  • Blondel, A., Langeron, J., Sayen, S., Hénon, E., Couderchet, M., & Guillon, E. (2013). Molecular properties affecting the adsorption coefficient of phenylurea herbicides. Environmental Science and Pollution Research, 20(9), 6266–6281.

    Article  CAS  Google Scholar 

  • Bouman, B. A. M., Castañeda, A. R., & Bhuiyan, S. I. (2002). Nitrate and pesticide contamination of groundwater under rice-based cropping systems: past and current evidence from the Philippines. Agriculture, Ecosystems & Environment, 92(2–3), 185–199.

    Article  CAS  Google Scholar 

  • Brusseau, M. L. (1995). The effect of nonlinear sorption on the trans-formation of contaminants during transport in porous media. Journal of Contaminant Hydrology, 17, 277–291.

    Article  CAS  Google Scholar 

  • Chartzoulakis, K., Michelakis, N., & Stefanoudaki, E. (1999). Water use, growth, yieldand fruit quality of ‘Bonanza’ oranges under different soil water. Advances in Horticultural Science, 13, 6–11.

    Google Scholar 

  • Chartzoulakis, K. S., Paranychianakis, N. V., & Angelakis, A. N. (2001). Water resources management in the Island of Crete, Greece, with emphasis on the agricultural use. Water Policy, 3, 193–205.

    Article  Google Scholar 

  • Christiansen, J. S., Thorsen, M., Clausen, T., Hansen, S., & Refsgaard, J. C. (2004). Modelling of macropore flow and transport processes at catchment scale. Journal of Hydrology, 299, 136–158.

    Article  CAS  Google Scholar 

  • Commission Directive 2008/91/EC of 29 September 2008 amending Council Directive 91/414/EEC to include Diuron as active substance.

  • Cukierman, A.L. (2013). Development and environmental applications of activated carbon cloths. ISRN Chemical Engineering 31, doi:10.1155/2013/261523.

  • Delta-T (2005). Delta-T devices - soil moisture sensors. http://www.delta-t.co.uk.

  • DHI (2007). Mike SHE: an integrated hydrological modelling system. Documentation and users guide.

  • EPA. (1994). Potential groundwater contamination from intentional and nonintentional stormwater infiltration. United States Environmental Protection Agency. EPA/600/SR-94/051.

  • FAO. (2000). Technical conversion factors for agricultural commodities. FAO, http://www.fao.org/fileadmin/templates/ess/documents/methodology/tcf.pdf (accessed November 2014).

  • FAO. (2011). FAOSTAT online database, available at link http://faostat.fao.org/. Accessed on December 2011.

  • Fereres, E., & Soriano, M. A. (2007). Deficit irrigation for reducing agricultural water use. Journal of Experimental Botanic, 58, 147–158.

    Article  CAS  Google Scholar 

  • Frana, A. S. (2012). Applicability of MIKE SHE to simulate hydrology in heavily tile drained agricultural land and effects of drainage characteristics on hydrology. Graduate Theses and Dissertations. Iowa State University.

  • Goldhamer, D. A., & Salinas, M. (2000). Evaluation of regulated deficit irrigation on mature orange trees grown under high evaporative demand. In: Proceedings of the International Society of Citriculture IX Congress. Orlando, FL. December 3–7, 2000: 227–231.

  • Gupta, M., Garg, N. K., Joshi, H., & Sharma, M. P. (2014). Assessing the impact of irrigation treatments on thiram residual trends: correspondence with numerical modelling and field-scale experiments. Environmental Monitoring and Assessment, 186(3), 1639–1654.

    Article  CAS  Google Scholar 

  • Hermosin, M. C., Calderon, M. J., Real, M., & Cornejo, J. (2013). Impact of herbicides used in olive groves on waters of the Guadalquivir river basin (southern Spain). Agriculture, Ecosystems & Environment, 164, 229–243.

    Article  CAS  Google Scholar 

  • Hilgeman, R. H., & Sharp, F. O. (1970). Response of ‘Valencia’ orange trees to four soil water schedules during 20 years. Journal of the American Society for Horticultural Science, 95(6), 739–745.

    Google Scholar 

  • Kourgialas, N. N., & Karatzas, G. P. (2015). Groundwater contamination risk assessment in crete. Greece using Numerical tools within a GIS framework. Hydrological Science Journal, 60(1), 111–132.

    Article  Google Scholar 

  • Kourgialas, N. N., Karatzas, G. P., & Nikolaidis, N. P. (2010). An integrated framework for the hydrologic simulation of a complex geomorphological river basin. Journal of Hydrology, 381, 308–321.

    Article  Google Scholar 

  • Kourgialas, N.N., Karatzas, G.P., & Marianou, G. (2014). Water management plan for olive orchards in a semi-mountainous area of Crete, Greece. Global Nest Journal, 17(1), 72–81.

  • Kristensen, K. J., & Jensen, S. E. (1975). A model of estimating actual evapotranspiration from potential evapotranspiration. Nordic Hydrology, 6, 170–188.

    Google Scholar 

  • Li, J., & Liu, Y. (2011). Water and nitrate distributions as affected by layered-textural soil and buried dripline depth under subsurface drip fertigation. Irrigation Science, 29, 469–478.

    Article  Google Scholar 

  • Li, R., Ma, J., & Zhang, R. (2003). Estimating nitrate leaching with a transfer function model incorporating net mineralization and uptake of nitrogen. Journal of Environmental Quality, 32, 1455–1463.

    Article  Google Scholar 

  • Lohani, V. K., Refsgaard, J. C., Clausen, T., Erlich, M., & Storm, B. (1993). Applications of the SHE for irrigation command area studies in India. Journal of Irrigition and Drainage Engineering, ASCE, 119, 34–49.

    Article  Google Scholar 

  • Mann, K. K., Schumann, A. W., Obreza, T. A., Harris, W. G., & Shukla, S. (2010). Spatial variability of soil physical properties affecting Florida citrus production. Soil Science, 175(10), 487–499.

    Article  CAS  Google Scholar 

  • Ministry of Agriculture. (2001). Hydrogeological study of Chania plain (KA 9481721), issue 1, hydrogeological report, enlist consultants Michael Lione. Athens: Claus Perlerou (In Greek).

    Google Scholar 

  • Morgan, K. T., Obreza, T. A., Scholberg, J. M. S., Parsons, L. R., & Wheaton, T. A. (2006). Citrus water uptake dynamics on a sandy Florida entisol. Soil Science Society of America Journal, 70(1), 90–97.

    Article  CAS  Google Scholar 

  • Morgan, K. T., Obreza, T. A., & Scholberg, J. M. S. (2007). Orange tree fibrous root length distribution in space and time. Journal of the American Society for Horticultural Science, 132(2), 262–269.

    Google Scholar 

  • Paramasivam, S., Alva, A. K., Fares, A., & Sajwan, K. S. (2002). Fate of nitrate and bromide in an unsaturated zone of a sandy soil under citrus production. Journal of Environmental Quality, 31, 671–681.

    Article  CAS  Google Scholar 

  • Perleros, B., Papamastorakis, D., Kritsotakis, M., Drakopoulou, E. & Papagopoulos, A. (2004). Groundwater potential of the island of Crete: Problems and perspectives. Bulletin of the Geological Society of Greece, XXXVI:2048-2056 (in greek).

  • Phogat, V., Skewes, M. A., Cox, J. W., Alam, J., Grigson, G., & Šimůnek, J. (2013). Evaluation of water movement and nitrate dynamics in a lysimeter planted with an orange tree. Agricultural Water Management, 127, 74–84.

    Article  Google Scholar 

  • Rahim, B.-e E A., Yusoff, I., Jafri, A. M., Othman, Z., & Abdul Ghani, A. (2012). Application of MIKE SHE modelling system to set up a detailed water balance computation. Water and Environment Journal, 26(4), 490–503.

    Article  Google Scholar 

  • Refsgaard, J. C., & Knudsen, J. (1996). Operational validation and intercomparison of different types of hydrological models. Water Resources Research, 32(7), 2189–2202.

    Article  Google Scholar 

  • Refsgaard, J. C., & Storm, B. (1995). MIKE SHE. In V. P. Singh (Ed.), Computer models of watershed hydrology (pp. 806–846). CO: Water Resource Publications.

    Google Scholar 

  • Refsgaard, J. C., Seth, S. M., Bathurst, J. C., Erlich, M., & Jorgensen, B. (1992). Application of SHE to catchment in India part II: general results. Journal of Hydrology, 140, 23–59.

    Article  Google Scholar 

  • Rodríguez-Liébana, J. A., ElGouzi, S., Mingorance, M. D., Castillo, A., & Peña, A. (2014). Irrigation of a Mediterranean soil under field conditions with urban wastewater: effect on pesticide behaviour. Agriculture, Ecosystems & Environment, 185, 176–185.

    Article  Google Scholar 

  • Schaap, M. G., Leij, F. J., & van Genuchten, M. T. (2001). ROSETTA: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. Journal of Hydrology, 251(3–4), 163–176.

    Article  Google Scholar 

  • Shirgure, P. S. (2013). Research review on irrigation scheduling and water requirement in citrus. Scientific Journal of Review, 2(4), 113–121.

    Google Scholar 

  • Šimůnek, J., & Nimmo, J. R. (2005). Estimating soil hydraulic parameters from transient flow experiments in a centrifuge using parameter optimization technique. Water Resources Research, 41(4), W04015.

    Google Scholar 

  • Singh, R., Refsgaard, J. C., Yde, L., Jorgensen, G. H., & Thorsen, M. (1997). Hydraulic-hydrological simulations of canal-command for irrigation water management. Irrigition and Drainage System, 11, 185–213.

    Article  Google Scholar 

  • Singh, R., Subramanian, K., & Refsgaard, J. C. (1999). Hydrological modelling of a small watershed using MIKE SHE for irrigation planning. Agricultural Water Management, 41(3), 149–166.

    Article  Google Scholar 

  • Steduto, P., Hsiao, T. C., Raes, D., & Fereres, E. (2009). AquaCrop - the FAO crop model to simulate yield response to water: I. Concepts and underlying principles. Agronomy Journal, 101, 426–437.

    Article  Google Scholar 

  • Subbaiah, R. (2011). A review of models for predicting soil water dynamics during trickle irrigation. Irrigation Science, 31(3), 225–258.

    Article  Google Scholar 

  • Thakur, R. S., Rajput, M. S., & Srivastava, K. C. (1981). Root distribution studies in some fruit crops with special reference to tracer technique—a review. Haryana Journal of Horticulture Science, 10, 45–53.

    Google Scholar 

  • Twarakavi, N. K. C., Šimůnek, J., & Schaap, M. G. (2010). Can texture-based classification optimally classify soils with respect to soil hydraulics? Water Resources Research, 46(1), W01501. doi:10.1029/2009WR007939.

    Article  Google Scholar 

  • Ullrich, A., & Volk, M. (2010). Influence of different nitrate–N monitoring strategies on load estimation as a base for model calibration and evaluation. Environmental Monitoring and Assessment, 171(1–4), 513–527.

    Article  Google Scholar 

  • Van der Laan, M., Stirzaker, R. J., Annandale, J. G., Bristow, K. L., & du Preez, C. C. (2010). Monitoring and modelling draining and resident soil water nitrate concentrations to estimate leaching losses. Agricultural Water Management, 97, 1779–1786.

    Article  Google Scholar 

  • Water Resources Department of the Prefecture of Crete. (2009). Sustainable management of water resources in Crete Telemetric system of groundwater (in Greek). Region of Crete Information Bull. Available from: http://www.region-crete.gr.

  • Wauchope, R. D., Yeh, S., Linders, J. B., Kloskowski, R., Tanaka, K., Rubin, B., Katayama, A., Kördel, W., Gerstl, Z., Lane, M., & Unsworth, J. B. (2002). Pesticide soil sorption parameters: theory, measurement, uses, limitations and reliability. Pest Management Science, 58(5), 419–445.

    Article  CAS  Google Scholar 

  • Xu, Μ., & Eckstein, Y. (1995). Use of weighted least sqares method in evaluation of the relationship between dispersion and field scale. Ground Water, 33(6), 905–908.

    Article  CAS  Google Scholar 

  • Zhang, H., & Oweis, T. (1999). Water-yield relations and optimal irrigation scheduling of wheat in the Mediterranean region. Agricultural Water Management, 38, 195–211.

    Article  Google Scholar 

Download references

Acknowledgments

This research project is funded under the Action “Research & Technology Development Innovation projects (AgroETAK),” MIS 453350, in the framework of the Operational Program “Human Resources Development.” It is co-funded by the European Social Fund and by National Resources through the National Strategic Reference Framework 2007–2013 (NSRF 2007–2013) coordinated by the Hellenic Agricultural Organization “DEMETER”—Institute of Olive Tree, Subtropical Plants and Viticulture. The authors wish to thank Senior Researcher Dr. Ioannis Androulakis, Researcher Dr. George Koubouris, and the anonymous reviewers who provided helpful comments for the improvement of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nektarios N. Kourgialas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kourgialas, N.N., Karatzas, G.P. A modeling approach for agricultural water management in citrus orchards: cost-effective irrigation scheduling and agrochemical transport simulation. Environ Monit Assess 187, 462 (2015). https://doi.org/10.1007/s10661-015-4655-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4655-7

Keywords

Navigation