Skip to main content

Advertisement

Log in

Metals bioavailability in surface sediments off Nile delta, Egypt: Application of acid leachable metals and sequential extraction techniques

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Surface sediments from Nile Delta coast were analyzed for texture, CaCO3, organic matter, fractionation, and acid leachable metals (Cr, Fe, Mn, Ni, Pb, and Zn). The distribution pattern of acid leachable heavy metals in the sediment follows the sequence: Fe>Mn>Pb>Zn>Ni>Cr. All the acid leachable metals didn’t exceed the sediment quality guidelines values (effects range low (ERL) and effects range medium (ERM)) and therefore doesn’t represent a danger to marine organisms. The correlation of acid leachable Fe, Ni, and Mn indicates a similarity in the association of metals of similar origin. The negative correlation of sand with acid leachable Cr, Fe, Ni, Pb, and Zn indicates that these elements can be easily released by ion exchange processes due to the electrostatic interaction of trace metals as they are weakly bound and is bioavailable to the liquid phase. The acid leachable Cr, Pb, and Zn indicate their association with the CaCO3, while acid leachable Fe, Mn, and Ni are hardly combined with carbonates. All the contents of acid leachable metals are negatively correlated or uncorrelated with OM, which indicates that the studied heavy metals are hardly combined with OM. The results of the partitioning study showed that the residual form was the dominant fraction of the Cr, Fe, and Ni among most of the studied locations. Among the non-lithogenic fractions, the Fe-Mn oxy-hydroxide is the main scavenger for all metals. In terms of risk assessment code (RAC) value, a decrease order in environmental risk by heavy metals was Pb>Mn>Zn>Ni>Cr>Fe. Although the results of the two techniques were not consistent with each other in terms of predicting the metals bioavailablity, a combination of total metal concentrations, acid leachable metals, and sequential extraction analysis is necessary to acquire the comprehensive information on the baseline, anthropogenic input, and bioavailability of heavy metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agemian, H., & Chau, A. S. Y. (1976). Evaluation of extraction technique for the determination of metals in aquatic sediments. Analyst, 101, 761–767.

    Article  CAS  Google Scholar 

  • Baruah, T. C., & Barthakur, H. P. (1997). A textbook of soil analysis. New Delhi: Vikas Publishing House, Pvt. Ltd.

    Google Scholar 

  • Black, C. A. (1965). Methods of soil analysis, part 2, chemical and microbiological properties. Madison: American Society of Agronomy Inc.

    Google Scholar 

  • Dang, T. C., & Jeffrey, P. O. (2006). Metal speciation in coastal marine sediments from Singapore using a modified BCR sequential extraction procedure. Applied Geochemistry, 21, 1335–1346.

    Article  Google Scholar 

  • Davidson, C. M., Ferreira, P. C. S., & Ure, A. M. (1999). Fresenius' Journal of Analytical Chemistry, 363, 446.

    Article  CAS  Google Scholar 

  • Dickinson, W. W., Dunbar, G. B., & McLeond, H. (1996). Heavy metal history from cores in Wellington Harbour, New Zealand. Environmental Geology, 27, 59–69.

    Article  CAS  Google Scholar 

  • EEAA (Egyptian Environmental Affairs Agency) (2009). National circumstances. Egypt Second National Communication on Climate Change.

  • Folk, R. L. (1974). Petrology of sedimentary rocks. Austin: Hemphill Pub. Co.

  • Forstner, U. (1985). In Chemical methods for assessing bioavailable metals in sludges. Lechsber, R., Davis, R. A., Hermitte, P. L. (Eds.), London: Elsevier.

  • Förstner, U., & Wittmann, G. (1979). Metal pollution in the aquatic environment (p. 486). Berlin-Heidelberg-New York: Springer-Verlag.

  • Hamza, W. (2009). The Nile Delta. In H. J. Dumont (Ed.), The Nile: Origin, environments, limnology and human use. Netherland: Springer Science & Business Media.

    Google Scholar 

  • Horowitz, A. J. (1991). A primer on trace metal—Sediment chemistry (2nd ed., p. 136). Chelsea: Lewis Publisher.

    Google Scholar 

  • Hu, G., Yu, R., & Zhao, J. (2011). Distribution and enrichment of acid leachable heavy metals in the intertidal sediments from the Quanzhou Bay, southeast coast of China. Environmental Monitoring and Assessment, 173, 107–116.

    Article  CAS  Google Scholar 

  • Hu, D., He, J., Lu, C., Ren, L., Fan, Q., Wang, J., & Xie, Z. (2013). Distribution characteristics and potential ecological risk assessment of heavy metals (Cu, Pb, Zn, Cd) in water and sediments from Lake Dalinouer, China. Ecotoxicology and Environmental Safety, 93, 135–144.

    Article  Google Scholar 

  • Ip Carman, C. M., Li, X. D., Zhang, G., Wai, O. W. H., & Li, Y. S. (2007). Trace metal distribution in sediments in the Pearl River Estuary and the surrounding coastal area, South China. Environmental Pollution, 147, 311–323.

    Article  CAS  Google Scholar 

  • Iwegbue, C. M. A., Nwajeia, G. E., Eguavoenb, O., & Ogalac, J. E. (2009). Chemical fractionation of some heavy metals in soil profiles in vicinity of scrap dumps in Warri, Nigeria. Chemical Speciation & Bioavailability, 21, 99–110.

    Article  CAS  Google Scholar 

  • Jain, C. K. (2004). Metal fractionation study on bed sediments of River Yamuna, India. Water Research, 38, 569–578.

    Article  CAS  Google Scholar 

  • Jayaprakash, M., Jonathan, M. P., Srinivasalu, S., Muthuraj, S., Ram-Mohan, V., & Rajeshwara-Rao, N. (2007). Acid leachable trace metals in sediments from an industrialized region (Ennore Creek) of Chennai City, SE coast of India: an approach towards regular monitoring. Estuarine, Coastal and Shelf Science, 22, 1–12.

    Google Scholar 

  • Jayaprakash, M., Viswam, A., Gopal, V., Muthuswamy, S., Kalaivanan, P., Giridharan, L., & Jonathan, M. P. (2014). Bioavailable trace metals in micro-tidal Thambraparani estuary, Gulf of Mannar, SE Coast of India. Estuarine, Coastal and Shelf Science, 146, 42–48.

    Article  CAS  Google Scholar 

  • Jonathan, M. P., Ram-Mohan, V., & Srinivasalu, S. (2004). Geochemical variations of major and trace elements in recent sediments, off the Gulf of Mannar, the southeast coast of India. Environmental Geology, 45, 466–480.

    Article  CAS  Google Scholar 

  • Kaiser, M. F., Aboulela, H. A., El-Serehy, H. A., Ezz El-Din, H. (2012). Heavy metals contamination of a Mediterranean coastal ecosystem, eastern Nile delta, Egypt. International perspectives on global environmental change. Dr. Stephen Young (Ed.), ISBN: 978-953-307-815-1, InTech.

  • Leivouri, M. (1998). Heavy metal contamination in surface sediments in the Gulf of Finland and comparison with the Gulf of Bothnia. Chemosphere, 36(1), 43–59.

  • Liu, H., Li, L., Yin, C., & Shan, B. (2008). Fractionation distribution and risk assessment of heavy metals in sediments of Moushui Lake. Journal of Environmental Sciences, 20, 390–397.

    Article  CAS  Google Scholar 

  • Long, E. R., Macdonald, D. D., Smith, S. L., & Calder, F. D. (1995). Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environmental Management, 19, 81–97.

    Article  Google Scholar 

  • Meguellati, M., Robbe, D., Marchandise, P., Astruc, M. (1983). In Proc. Int. Conf. on Heavy metals in the environment. Heidelberg CEP Consultants: Edinburgh, p. 1090.

  • Morillo, J., Usero, I., & Gracia, I. (2004). Heavy metal distribution in marine sediments from the southwest coast of Spain. Chemosphere, 55(3), 431–442.

  • Nguyen, H.T., Ohtsubo, M., Li, L., Higashi, T., Kanayama, M. (2010). Heavy metal characterization and leachability of organic matter rich river sediments in Hanoi, Vietnam. International Journal of Soil, Sediment and Water, 3(1), Art. 5 ISSN: 1940–3259.

  • Oregioni, B., Aston, S. R. (1984). Determination of selected trace metals in marine sediments by flame/flameless atomic absorption spectrophotometer. IAEA Monaco Laboratory Internal Report. Now cited in reference method in pollution studies No. 38, UNEP, 1986.

  • Passos, E., Alves, J., dos Santos, I., Alves, J., Garcia, C., & Spinola Costa, A. (2010). Assessment of trace metals contamination in estuarine sediments using a sequential extraction technique and principal component analysis. Microchemical Journal, 96(1), 50–57.

  • Perin, G., Craboledda, L., Lucchese, M., Cirillo, R., Dotta, L., Zanette, M., Orio, A. (1985). Heavy metals speciation in the sediments of Northern Adriatic Sea a new approach for environmental toxicity determination. In Lekkas, T.D. (Ed.), Heavy metals in the environment, vol. 21, pp. 454–456.

  • Poulton, D. J., Morris, W. A., & Coakley, J. P. (1996). Zonation of contaminated bottom sediments in Hamilton Harbour as defined by statistical classification techniques. Water Quality Research Journal of Canada, 31(3), 505–528.

  • Rath, P., Panda, U. C., Bhatta, D., & Sahu, K. C. (2009). Use of sequential leaching, mineralogy, morphology and multivariate statistical technique for quantifying metal pollution in highly polluted aquatic sediments—a case study: Brahamani and Nandirarivers, India. Journal of Hazardous Materials, 163, 632–644.

    Article  CAS  Google Scholar 

  • Rauret, G. (1998). Extraction procedures for the determination of heavy metals in contaminated soil and sediment. Talanta, 46, 449–455.

    Article  CAS  Google Scholar 

  • Rui-lian, Y., Xing, Y., Yuan-hui, A., Gong-ren, H., & Xian lin, T. (2008). Heavy metal pollution in intertidal sediments from Quanzhou By, China. Journal of Environmental Sciences, 20, 664–669.

    Article  Google Scholar 

  • Selvaraj, K., Ram-Mohan, V., & Szefer, P. (2004). Evaluation of metal contamination in coastal sediments of the Bay of Bengal, India: Geochemical and statistical approaches. Marine Pollution Bulletin, 49, 174–185.

    Article  CAS  Google Scholar 

  • Sestini, G. (1990). Impacts of global climate change in the Mediterranean region: responses and policy options. In Titus, J. G. (Ed.), Changing climate and the coast, Volume 2: Western Africa, the Americas, the Mediterranean Basin, and the Rest of Europe (pp. 115–125).

  • Sundaray, S. K. (2007). Water quality assessment of Mahanadi River, Orissa, India using multivariate statistical approach. Doctoral Thesis, Utkal University, Bhubaneswar, India.

  • Taliadouri, F. V. (1995). A weak acid extraction method as a tool for the metal pollution assessment in surface sediments. Mikrochimica Acta, 119(3–4), 243–249.

  • Tessier, A., Campbell, P. G. C., & Biason, M. (1979). Sequential extraction procedure for speciation of particulate trace metals. Journal of Analytical Chemistry, 51, 844–851.

    Article  CAS  Google Scholar 

  • Tuzen, M. (2003). Determination of trace metals in the River Yesilirmak sediments in Tokat, turkey using sequential extraction procedure. Microchemical Journal, 74, 105–110.

    Article  CAS  Google Scholar 

  • Zakir, H. M., & Shikazono, N. (2011). Environmental mobility and geochemical partitioning of Fe, Mn, Co, Ni and Mo in sediments of an urban river. Journal of Environmental Chemistry and Ecotoxicology, 3, 116–126.

    CAS  Google Scholar 

  • Zhang, J., Huang, W. W., & Martin, J. M. (1988). Trace metal distribution in Hunghe (Yellow river). Estuarine, Coastal and Shelf Science, 26, 499–516.

    Article  CAS  Google Scholar 

Download references

Compliance with ethical standards

This paper complies with ethical standards

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naglaa F. Soliman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasr, S.M., Soliman, N.F., Khairy, M.A. et al. Metals bioavailability in surface sediments off Nile delta, Egypt: Application of acid leachable metals and sequential extraction techniques. Environ Monit Assess 187, 312 (2015). https://doi.org/10.1007/s10661-015-4548-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4548-9

Keywords

Navigation