Skip to main content

Advertisement

Log in

Tropical soils cultivated with tomato: fractionation and speciation of Al

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Soil acidity and the associated problems of aluminum (Al) toxicity and scarce exchangeable bases are typically the most important limiting factors of agricultural yield in wet tropical regions. The goals of this study were to test how soil lime rates affect the forms and distribution of Al in the soil fractions and how different levels of bioavailable Al affect two tomato genotypes grown in wet tropical soils. The tomato genotypes CNPH 0082 and Calabash Rouge were grown in two wet tropical soils in a greenhouse. Soil lime rates of 0, 560, and 2240 mg kg−1 soil (clay soil) and 0, 280, and 1120 mg kg−1 soil (sandy soil) were applied to modify Al concentrations. Dry mass production and Al concentrations were determined in shoots and roots. Al was fractionated in the soil, and the soil solution was speciated after cultivation. The Calabash Rouge genotype possesses mechanisms to tolerate Al3+, absorbed less Al, exhibited smaller reduction in growth, and lower Al concentrations in plant parts than the CNPH 0082. Increased soil pH reduced the exchangeable Al fraction and increased the fraction mainly linked to organic matter. Al in the soil in the form of complexes with organic compounds and Al(SO4)+ (at the highest lime rate) did not affect plant development. Soil acidity can be easily neutralized by liming the soil, which transforms toxic Al3+ in the soil into forms that do not harm tomato plants, thereby avoiding oxidative stress in the plants. Al-induced stress in tomatoes varies with genotypes and soil type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abreu, C. H., Jr., Muraoka, T., & Lavorenti, A. F. (2003). Relationship between acidity and chemical properties of Brazilian soils. Scientia Agricola, 60, 337–343. doi:10.1590/S0103-90162003000200019.

    Article  CAS  Google Scholar 

  • Achary, V. M. M., Jena, S., Panda, K. K., & Panda, B. B. (2008). Aluminium induced oxidative stress and DNA damage in roots cells of Allium cepa L. Ecotoxicology and Environmental Safety, 70, 300–310. doi:10.1016/j.ecoenv.2007.10.022.

    Article  CAS  Google Scholar 

  • Arruda, M. A. Z., & Azevedo, R. A. (2009). Metallomics and chemical speciation: towards a better understanding of metal-induced stress in plants. Annals of Applied Biology, 155, 301–307. doi:10.1111/j.1744-7348.2009.00371.×.

    Article  CAS  Google Scholar 

  • Bloom, P. R., & Erich, M. S. (1995). The quantification of aqueous aluminum. In G. SPOSITO (Ed.), The environmental chemistry of aluminum (pp. 1–38). Boca Raton: Lewis.

    Google Scholar 

  • Canellas, L. P., Teixeira, J. L. R. L., Dobbss, L. B., Silva, C. A., Medici, L. O., Zandonadi, D. B., & Façanha, A. R. (2008). Humic acids crossinteractions with root and organic acids. Annals of Applied Biology, 153, 157–166. doi:10.1111/j.1744-7348.2008.00249.x.

    CAS  Google Scholar 

  • Ding, H. Y., Wen, D. N., Fu, Z. W., & Qian, H. F. (2014). The secretion of organic acids is also regulated by factors other than aluminum. Environmental Monitoring and Assessment, 186, 1123–1131. doi:10.1007/s10661-013-3443-5.

    Article  CAS  Google Scholar 

  • Drabek, O., Boruvka, L., Mladkova, L., & Kocarek, M. (2003). Possible method of aluminium speciation in forest soils. Journal of Inorganic Biochemistry, 97, 8–15. doi:10.1016/S0162-0134(03)00259-9.

    Article  CAS  Google Scholar 

  • Drabek, O., Mladkova, L., Boruvka, L., Szakova, J., Nikodem, A., & Nemecek, K. (2005). Comparison of water-soluble and exchangeable forms of Al in acid forest soils. Journal of Inorganic Biochemistry, 99, 1788–1795. doi:10.1016/j.jinorgbio.2005.06.024.

    Article  CAS  Google Scholar 

  • Famoso, A. N., Clark, R. T., Shaff, J. E., Craft, E., McCouch, S. R., & Kochian, L. V. (2010). Development of a novel aluminum tolerance phenotyping platform used for comparisons of cereal aluminum tolerance and investigations into rice aluminum tolerance mechanisms. Plant Physiology, 153, 1678–1691. doi:10.1104/pp. 110.156794.

    Article  CAS  Google Scholar 

  • Gratão, P. L., Polle, A., Lea, P. J., & Azevedo, R. A. (2005). Making the life of heavy metal-stressed plants a little easier. Functional Plant Biology, 32, 481–494. doi:10.1071/FP05016.

    Article  Google Scholar 

  • Grimm, D. M., Azarraga, L. V., Carreira, L. A., & Susetyo, W. (1991). Continuous multiligant distribution model used to predict the stability constant of copper (II) metal complexation with humic material from fluorescence quenching data. Environmental Science & Technology, 25, 1427–1431. doi:10.1021/es00020a010.

    Article  CAS  Google Scholar 

  • Gustafsson, J.P. (2004). Visual MINTEQ. http://www.lwr.kth.se/English/OurSoftware/Vminteq [accessed 26 October 2013]

  • Haynes, R. J. (2000). Labile organic matter as an indicator or organic matter quality in arable and pastoral soils in New Zealand. Soil Biology and Biochemistry, 32, 211–219. doi:10.1016/S0038-0717(99)00148-0.

    Article  CAS  Google Scholar 

  • Hoagland, D. R., & Arnon, D. I. (1950). The water culture method for growing plants without soil (p. 32pp). Berkeley: California Agricultural Experiment Station.

    Google Scholar 

  • Horst, W. J., Wang, Y., & Eticha, D. (2010). The role of the root apoplast in aluminium-induced inhibition of root elongation and in aluminium resistance of plants: a review. Annals of Botany, 106, 185–197. doi:10.1093/aob/mcq053.

    Article  CAS  Google Scholar 

  • Jones, E., & Singh, B. (2014). Organo-mineral interactions in contrasting soils under natural vegetation. Frontiers in Environmental Science, 2, 1–15. doi:10.3389/fenvs.2014.00002.

    Article  Google Scholar 

  • Kochian, L. V. (1995). Cellular mechanisms of aluminum toxicity and resistance in plants. Annual Review of Plant Physiology and Plant Molecular Biology, 46, 237–260. doi:10.1146/annurev.pp. 46.060195.001321.

    Article  CAS  Google Scholar 

  • Kochian, L. V., Hoekenga, A. O., & Piñeros, M. A. (2004). How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annual Review of Plant Biology, 55, 459–493. doi:10.1146/annurev.arplant.55.031903.141655.

    Article  CAS  Google Scholar 

  • Kolaei, E. A., Cenatus, C., Tweddell, R. J., & Avis, T. J. (2013). Antifungal activity of aluminium-containing salts against the development of carrot cavity spot and potato dry rot. Annals of Applied Biology, 163, 311–317. doi:10.1111/aab.12056.

    Article  CAS  Google Scholar 

  • Li, L., Bhatia, M., & Moore, P. K. (2006). Hydrogen sulphide - a novel mediator of inflammation? Current Opinion in Pharmacology, 6, 125–129. doi:10.1016/j.coph.2005.10.007.

    Article  CAS  Google Scholar 

  • Lin, Y., & Su, P. (2010). Behavior of aluminum adsorption in different compost-derived humic acids. Clean, 38, 916–920. doi:10.1002/clen.201000034.

    CAS  Google Scholar 

  • Lombi, E., Gerzabek, M. H., & Horak, O. (1998). Mobility of heavy metals in soil and their uptake by sunflowers grown at different concentration levels. Agronomie, 18, 361–371. doi:10.1051/agro:19980503.

    Article  Google Scholar 

  • Ma, J. F. (2007). Syndrome of aluminum toxicity and diversity of aluminum resistance in higher plants. International Review of Cytology, 264, 225–252. doi:10.1016/S0074-7696(07)64005-4.

    Article  CAS  Google Scholar 

  • Ma, J. F., Ryan, P. R., & Delhaize, E. (2001). Aluminium tolerance in plants and the complexing role of organic acids. Trends in Plant Science, 6, 273–278. doi:10.1016/S1360-1385(01)01961-6.

    Article  CAS  Google Scholar 

  • Malavolta, E., Vitti, G. C., & Oliveira, A. S. (1997). Assessment of nutritional status of plants: Principles and applications (2nd ed.) (p. 319). Piracicaba: Associação Brasileira para Pesquisa da Potassa e do Fosfato.

    Google Scholar 

  • Matúš, P. (2007). Evaluation of separation and determination of phytoavailable and phytotoxic aluminium species fractions in soil, sediment and water samples by five different methods. Journal of Inorganic Biochemistry, 101, 1214–1223. doi:10.1016/j.jinorgbio.2007.06.014.

    Article  Google Scholar 

  • Mengel, K., & Kirkby, E. (2001). Principles of plant nutrition (5th ed., p. 849). Dordrecht: Kluwer Academic Publishers.

    Book  Google Scholar 

  • Nogueirol, R. C., Monteiro, F. A., Gratão, P. L., Borgo, L., & Azevedo, R. A. (2015). Tropical soils with high aluminum concentrations cause oxidative stress in two tomato genotypes. Environmental Monitoring and Assessment, 187, 73. doi:10.1007/s10661-015-4282-3.

    Article  Google Scholar 

  • Panda, S. K., Baluska, F., & Matsumoto, H. (2009). Al stress signaling in plants. Plant Signaling & Behavior, 7, 592–597.

    Article  Google Scholar 

  • Piotto, F. A. (2012). Avaliação de tolerância ao cádmio em tomateiro (Solanum lycopersicum L.). Resource document. Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Ph.D. Thesis (in Portuguese). http://www.teses.usp.br/teses/disponiveis/11/11137/tde-18092012-134028/publico/Fernando_Angelo_Piotto.pdf. Accessed 4 Jan 2015.

  • Piotto, F. A., Tulmann Neto, A., Franco, M. R., Boaretto, L. F., & Azevedo, R. A. (2014). Rapid screening for selection heavy metals tolerant plants. Crop Breeding and Applied Biotechnology, 14, 1–7.

    Article  Google Scholar 

  • Rout, G., Samantaray, S., & Das, P. (2001). Aluminium toxicity in plants: a review. Agronomie, 21, 3–21. doi:10.1051/agro:2001105.

    Article  Google Scholar 

  • Ryan, P. R., Tyerman, S. D., Sasaki, T., Furuichi, T., Yamamoto, Y., Zhang, W. H., & Delhaize, E. (2011). The identification of aluminium-resistance genes provides opportunities for enhancing crop production on acid soils. Journal of Experimental Botany, 62, 9–20. doi:10.1093/jxb/erq272.

    Article  CAS  Google Scholar 

  • SAS Institute. (2002). SAS: User’s guide: statistics (6th ed.). Cary: SAS Institute.

    Google Scholar 

  • Sivaguru, M., Liu, J., & Kochian, L. V. (2013). Targeted expression of SbMATE in the root distal transition zone is responsible for sorghum aluminum resistance. The Plant Journal, 76, 297–307. doi:10.1111/tpj.12290.

    CAS  Google Scholar 

  • Urrutia, M., Macías, F., & Garcíz-Rodeja, E. (1995). Evaluación del CuCl2 y del LaCl3 como extractantes de aluminio en suelos ácidos de Galicia. Nova Acta Científica Compostelana (Bioloxía), 5, 173–182.

    Google Scholar 

  • Vieira, F. C. B., He, Z. L., Bayer, C., Stoffella, P. J., & Baligar, V. C. (2008). Organic amendment effects on the transformation and fractionation of aluminum in acidic sandy soil. Communications in Soil Science and Plant Analysis, 39, 2678–2694. doi:10.1080/00103620802358813.

    Article  CAS  Google Scholar 

  • Vitorello, V. A., Capaldi, F. R., & Stefanuto, V. A. (2005). Recent advances in aluminum toxicity and resistance in higher plants. Brazilian Journal of Plant Physiology, 17, 129–143. doi:10.1590/S1677-04202005000100011.

    Article  CAS  Google Scholar 

  • Walna, B., Kurzyca, I., & Siepak, J. (2004). Local effects of pollution on chemical composition of precipitation in areas differing in human impact. Polish Journal of Environmental Studies, 13, 36–42.

    Google Scholar 

  • Walna, B., Spychalski, W., & Siepak, J. (2005). Assessment of potentially reactive pools of aluminium in poor forest soils using two methods of fractionation analysis. Journal of Inorganic Biochemistry, 99, 1807–1816. doi:10.1016/j.jinorgbio.2005.06.026.

    Article  CAS  Google Scholar 

  • Wolt, J. D. (1994). Obtaining soil solution: laboratory methods. In J. D. Wolt (Ed.), Soil solution chemistry: applications to environmental science and agriculture (pp. 95–120). New York: Wiley.

    Google Scholar 

  • Yaman, M., & Akdeniz, I. (2006). Fractionation of aluminum in soil and relation to its concentration in fruits. Environmental Monitoring and Assessment, 115, 279–289. doi:10.1007/s10661-006-6554-4.

    Article  CAS  Google Scholar 

  • Yang, J. L., Zhang, L., & Zheng, S. J. (2008). Aluminum-activated oxalate secretion does not associate with internal content among some oxalate accumulators. Journal of Integrative Plant Biology, 50, 1103–1107. doi:10.1111/j.1744-7909.2008.00687.x.

    Article  CAS  Google Scholar 

  • Yi, M., Yi, H., Li, H., & Wu, L. (2010). Aluminum induces chromosome aberrations, micronuclei, and cell cycle dysfunction in root cells of Vicia faba. Environmental Toxicology, 25, 124–129. doi:10.1002/tox.20482.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, grants number 2009/54676-0 and 2011/23019-3). We thank Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (R.A.A and F.A.M) and FAPESP (R.C.N) for the fellowships and scholarship granted, respectively.

Conflict of interest

The authors have declared that no competing interest exists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Antunes Azevedo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nogueirol, R.C., Monteiro, F.A. & Azevedo, R.A. Tropical soils cultivated with tomato: fractionation and speciation of Al. Environ Monit Assess 187, 160 (2015). https://doi.org/10.1007/s10661-015-4366-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4366-0

Keywords

Navigation