Skip to main content

Advertisement

Log in

Impact of pulp and paper mill effluents and solid wastes on soil mineralogical and physicochemical properties

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The present study was carried out to evaluate the impact of the effluents and the solid wastes generated by a giant pulp and paper mill in the northeastern part of India on soil mineralogy of the area. The impacts were monitored by analysis of soil samples from seven sites located in the potential impact zone and a control site where any kind of effluent discharge or solid waste dumping was absent. The soil belonged to medium texture type (sandy clay loam, sandy loam, loamy sand, and silt loam), and the soil aggregate analysis indicated higher levels of organic carbon, pH, electrical conductivity, effective cation exchange capacity, and mean weight diameter at sites receiving effluents and solid wastes from the pulp and paper mill. Depletion in soil silica level and in feldspar and quartz contents and rise in iron and calcium contents at the sites receiving effluents from the pulp and paper mill indicated significant influence on soil mineralogy. The soil contained a mixture of minerals consisting of tectosilicates (with silicate frameworks as in quartz or feldspar), phylosilicates (layered clays like kaolinite, smectite, chlorite, illite, etc.), and carbonates. Absence of pure clay minerals indicated a state of heterogeneous intermediate soil clay transformation. The significance of the mixed mineralogy in relation to the disposal of effluents and dumping of solid wastes is discussed in details.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amini, S., Movahedi, S.A.R., & Mashayekhi, K. (2012). Effects of paper-mill sludge as a mulch versus topsoil incorporation on potassium uptake and the grain yield of rain-fed wheat in a high specific surface loess soil with illite dominance in clay fraction. Applied and Environmental Soil Science, 1-10 (2012). doi:10.1155/2012/624824.

  • Asghar, M. N., Khan, S., & Mushtaq, S. (2008). Management of treated pulp and paper mill effluent to achieve zero discharge. Journal of Environmental Management, 88, 1285–1299.

    Article  Google Scholar 

  • Baruah, T.C., & Barthakur, H.P. (1997). A textbook of soil analysis. Vikash Publishing House Pvt. Ltd., 576Masjid Road, Jangpura, New Delhi 110 014, p. 334.

  • Brindley, G. W., Kao, C. C., Harrison, J. L., Lipsicas, M., & Raythatha, R. (1986). Relation between structural disorder and other characteristics of kaolinites and dickites. Clays and Clay Minerals, 34(3), 239–249.

    Article  CAS  Google Scholar 

  • Chatterjee, D., Datta, S. C., & Manjaiah, K. M. (2013). Clay carbon pools and their relationship with short-range order minerals: avenues to mitigate climate change? Current Science, 105(10), 1404–1410.

    CAS  Google Scholar 

  • Clark, R. N., King, T. V. V., Klejwa, M., Swayze, G. A., & Vergo, N. (1990). High resolution reflectance spectroscopy of minerals. Journal of Geophysical Research, 95(B8), 12653–12680.

    Article  Google Scholar 

  • Davarcioglu, B. (2011). Spectral characterization of non-clay minerals found in the clays (Central Anatolian-Turkey), International Journal of the Physical Sciences, 6(3), 511-522, Available online at http://www.academicjournals.org/IJPS, doi: 10.5897/IJPS10.615, ISSN 1992–1950 ©2011 Academic Journals.

  • Diko, M. L., & Ekosse, G. E. (2012). Physicochemical and mineralogical considerations of Ediki sandstone-hosted kaolin occurrence, South West Cameroon. International Journal of the Physical Sciences, 7(3), 501–507, 16 January, 2012, Available online at http://www.academicjournals.org/IJPS, DOI: 10.5897/IJPS11.1506.

  • Duke, E. F. (1994). Near infrared spectra of muscovite. Tschermak substitution, and metamorphic reaction progress: implication for remote sensing. Geology, 22, 621–624.

    Article  CAS  Google Scholar 

  • Edalatmanesh, M., Sain, M., & Liss, S. N. (2010). Cellular biopolymers and molecular structure of a secondary pulp and paper mill sludge verified by spectroscopy and chemical extraction techniques. Water Science and Technology, 62(12), 2846–2853.

    Article  CAS  Google Scholar 

  • Harris, W., & White, G. N. (2008). In A. L. Ulery & L. R. Drees (Eds.), X-ray diffraction techniques for soil mineral identification :in methods of soil analysis part 5—mineralogical methods, Chapter 4 (pp. 81–116). Madison, Wisconsin: Soil Science Society of America, Inc.

    Google Scholar 

  • Hasse, P. R. (1994). A textbook of soil analysis, 1st Indian Reprint, CBS Publishers and Distributors Pvt. Ltd., CBS PLAZA, 24 Ansari Road, Darya Ganj, New Delhi 110002, p. 520.

  • Jackson, M. L. (1958). Soil chemical analysis (p. 484). Englewood Cliffs, N.J.: Prentice-Hall Inc.

    Google Scholar 

  • Madejová, J., & Komadel, P. (2001). Baseline studies of the clay minerals society source clays: infrared methods. Clays and Clay Minerals, 49, 410–432.

    Article  Google Scholar 

  • Miller, R. W., & Donahue, R. L. (1992). Soils: an introduction to soils and plant growth. Englewood Cliffs, N.J.: Prentice-Hall, Inc.

    Google Scholar 

  • Nayak, P. S., & Singh, B. K. (2007). Instrumental characterization of clay by XRF, XRD and FTIR. Bulletin of Materials Science, 30(3), 235–238. © Indian Academy of Sciences.

    Article  CAS  Google Scholar 

  • Olphen, H. Van, & Fripiat, J. J. (1979). Data handbook for clay materials and other non-metallic minerals. Pergamon Press: Oxford, UK 346 pages.

  • Opfergelt, S., Georg, R. B., Delvaux, B., Cabidoche, Y. M., Burton, K. W., & Halliday, A. (2012). Silicon isotopes and the tracing of desilication in volcanic soil weathering sequences, Gaudeloupe. Chemical Geology, 326–327, 113–122.

    Article  Google Scholar 

  • Park, J. H., Lamb, D., Paneerselvam, P., Choppala, G., Bolan, N., & Chung, J.-W. (2011). Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils. Journal of Hazardous Materials, 185, 549–574.

    Article  CAS  Google Scholar 

  • Pironon, J., Pelletier, M., De Donato, P., & Mosser-Ruck, R. (2003). Characterization of smectite and illite by FTIR spectroscopy of interlayer NH4 + cations. Clay Minerals, 38, 201–211.

    Article  CAS  Google Scholar 

  • Prost, R., & Yaron, B. (2001). Use of modified clays for controlling soil environmental quality. Social Science, 166, 880–894.

    CAS  Google Scholar 

  • Raj, A., Kumar, S., Haq, I., & Singh, S. K. (2014). Bioremediation and toxicity reduction in pulp and paper mill effluent by newly isolated ligninolytic Paenibacillus sp. Ecological Engineering, 71, 355–362.

    Article  Google Scholar 

  • Ravisankar, R., Senthikumar, G., et al. (2010). Mineral analysis of costal sediments of Tuna, Gujrat, India. Indian Journal of Science and Technology, 3(7), 774–780. ISSN: 0974-6846.

    CAS  Google Scholar 

  • Reeuwijk, L. P. (2002). Procedure for soil analysis (6th ed., p. 119). Wageningen, The Netherlands: International Soil Reference and Information Centre. ISBN 90-6672-044-1.

    Google Scholar 

  • Sarkar, D., & Halder, A. (2010). Physical and chemical methods in soil analysis (2nd ed., p. 211). New Delhi: New Age International Publishers. ISBN 978-81-224-2725-7.

    Google Scholar 

  • Schroeder, P. A. (2002). Infrared spectroscopy in clay science: in CMS Workshop Lectures. In A. Rule & S. Guggenheim (Eds.), Teaching Clay Science (Vol. 11, pp. 181–206). Aurora, CO: The Clay Mineral Society.

    Google Scholar 

  • Shoval, S., Yartiv, S., Michaelian, K. H., Boudeulle, M., & Panczer, G. (1999). Hydroxyl stretching Raman and infrared bands ‘A’ and ‘Z’ in spectra of kaolinites. Clay Minerals, 34, 551–563.

    Article  CAS  Google Scholar 

  • Szolosi, O. (2003). Water cycle with zero discharge at Visy Pulp and Paper, Tumut, NSW. Water (Australia), 30, 34–36.

    Google Scholar 

  • Thompson, G., Swain, J., Kay, M., & Froster, C. F. (2001). The treatment of ulp and paper mill effluent: a review. Bioresource Technology, 77, 275–286.

    Article  CAS  Google Scholar 

  • Vaculikova, L., & Plevova, E. (2005). Identification of clay minerals and micas in sedimentary rocks. Acta Geodynamics et Geomaterialia, 2(2 (138)), 167–175.

    Google Scholar 

  • Whitehead, J. H., & Geary, P. M. (2000). Geotechnical aspects of domestic on-site effluent management systems. Australian Journal of Earth Sciences, 47, 75–82.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was carried out under the Faculty Improvement Programme of University Grants Commission, New Delhi, India, to one of the authors (GA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishna G. Bhattacharyya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adhikari, G., Bhattacharyya, K.G. Impact of pulp and paper mill effluents and solid wastes on soil mineralogical and physicochemical properties. Environ Monit Assess 187, 98 (2015). https://doi.org/10.1007/s10661-015-4330-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4330-z

Keywords

Navigation