Skip to main content
Log in

Chemical and biological recovery from acid deposition within the Honnedaga Lake watershed, New York, USA

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Honnedaga Lake in the Adirondack region of New York has sustained a heritage brook trout population despite decades of atmospheric acid deposition. Detrimental impacts from acid deposition were observed from 1920 to 1960 with the sequential loss of acid-sensitive fishes, leaving only brook trout extant in the lake. Open-lake trap net catches of brook trout declined for two decades into the late 1970s, when brook trout were considered extirpated from the lake but persisted in tributary refuges. Amendments to the Clean Air Act in 1990 mandated reductions in sulfate and nitrogen oxide emissions. By 2000, brook trout had re-colonized the lake coincident with reductions in surface-water sulfate, nitrate, and inorganic monomeric aluminum. No changes have been observed in surface-water acid-neutralizing capacity (ANC) or calcium concentration. Observed increases in chlorophyll a and decreases in water clarity reflect an increase in phytoplankton abundance. The zooplankton community exhibits low species richness, with a scarcity of acid-sensitive Daphnia and dominance by acid-tolerant copepods. Trap net surveys indicate that relative abundance of adult brook trout population has significantly increased since the 1970s. Brook trout are absent in 65 % of tributaries that are chronically acidified with ANC of <0 μeq/L and toxic aluminum levels (>2 μmol/L). Given the current conditions, a slow recovery of chemistry and biota is expected in Honnedaga Lake and its tributaries. We are exploring the potential to accelerate the recovery of brook trout abundance in Honnedaga Lake through lime applications to chronically and episodically acidified tributaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anderson, D. R. (2008). Model based inference in the life sciences: a primer on evidence. New York: Springer.

    Book  Google Scholar 

  • Baker, J. P., & Christensen, S. W. (1991). Effects of acidification on biological communities in aquatic ecosystems. In D. F. Charles (Ed.), Acidic deposition and aquatic ecosystems: regional case studies (pp. 83–106). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Baker, J. P., Van Sickle, J., Gagen, C. J., DeWalle, D. R., Sharpe, W. E., Carline, R. F., Baldigo, B. P., Murdoch, P. S., Bayh, D. W., Kretser, W. A., Simonin, H. A., & Wigington, P. J. (1996). Episodic acidification of small streams in the northeastern United States: effects on fish populations. Ecological Applications, 6(2), 422–437.

    Article  Google Scholar 

  • Baldigo, B. P., & Murdoch, P. S. (1997). Effect of stream acidification and inorganic aluminum on mortality of brook trout (Salvelinus fontinalis) in the Catskill Mountains, New York. Canadian Journal of Fisheries and Aquatic Sciences, 54, 603–615.

    Article  CAS  Google Scholar 

  • Baldigo, B. P., Lawrence, G., & Simonin, H. (2007). Persistent mortality of brook trout in episodically acidified streams of the southwestern Adirondack Mountains, New York. Transactions of the American Fisheries Society, 136, 121–134.

    Article  Google Scholar 

  • Biro, P. A. (1998). Staying cool: behavioral thermoregulation during summer by young- of-the-year brook trout in a lake. Transactions of the American Fisheries Society, 127, 212–222.

    Article  Google Scholar 

  • Borwick, J., Buttle, J., & Ridgeway, M. S. (2006). A topographic index approach for identifying groundwater habitat of young-of-year brook trout (Salvelinus fontinalis) in the land–lake ecotone. Canadian Journal of Fisheries and Aquatic Sciences, 63, 239–253.

    Article  Google Scholar 

  • Burnham, K. P., & Anderson, D. R. (2002). Model selection and multimodel inference: a practical information-theoretic approach (2nd ed.). New York: Springer.

    Google Scholar 

  • Burns, D. A. (2011). National acid precipitation assessment program report to Congress 2011: an integrated assessment. Washington, D.C: National Science and Technology Council.

    Google Scholar 

  • Confer, J. L., Kaaret, T., & Likens, G. E. (1983). Zooplankton diversity and biomass in recently acidified lakes. Canadian Journal of Fisheries and Aquatic Sciences, 40, 36–42.

    Article  Google Scholar 

  • Curry, R. A., Brady, C., Noakes, D. L. G., & Danzmann, R. G. (1997). Use of small streams by young brook trout spawned in a lake. Transactions of the American Fisheries Society, 126, 77–83.

    Article  Google Scholar 

  • Doka, S. E., McNicol, D. K., Mallory, M. L., Wong, I., Minns, C. K., & Yan, N. D. (2003). Assessing potential for recovery of biotic richness and indicator species due to changes in acidic deposition and lake pH in five areas of southeastern Canada. Environmental Monitoring and Assessment, 88, 53–101.

    Article  CAS  Google Scholar 

  • Driscoll, C. T., Newton, R. M., Gubala, C. P., Baker, J. P., & Christensen, S. (1991). Adirondack mountains. In D. F. Charles (Ed.), Acidic deposition and aquatic ecosystems: regional case studies (pp. 133–202). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Driscoll, C. T., Lawrence, G. B., Bulger, A. J., Butler, T. J., Cronan, C. S., Eagar, C., Lambert, K. F., Likens, G. E., Stoddard, J. L., & Weathers, K. C. (2001). Acidic deposition in the Northeastern United States: Sources and inputs, ecosystem effects, and management strategies. BioScience, 51, 180–198.

    Article  Google Scholar 

  • Driscoll, C. T., Driscoll, K. M., Mitchell, M. J., & Raynal, D. J. (2003a). Effects of acidic deposition on forest and aquatic ecosystems in New York State. Environmental Pollution, 123, 327–336.

    Article  CAS  Google Scholar 

  • Driscoll, C. T., Driscoll, K. M., Roy, K. M., & Mitchell, M. J. (2003b). Chemical response of lakes in the Adirondack region of New York to declines in acidic deposition. Environmental Science and Technology, 37, 2036–2042.

    Article  CAS  Google Scholar 

  • Driscoll, C. T., Driscoll, K. M., Roy, K. M., & Dukett, J. (2007). Changes in the chemistry of lakes in the Adirondack region of New York following declines in acidic deposition. Applied Geochemistry, 22, 1181–1188.

    Article  CAS  Google Scholar 

  • Evans, C. D., Monteith, D. T., & Cooper, D. M. (2005). Long-term increases in surface water dissolved organic carbon: observations, possible causes and environmental impacts. Environmental Pollution, 137, 55–71.

    Article  CAS  Google Scholar 

  • Fischer, J. M., Klug, J. L., Ives, A. R., & Frost, T. M. (2001). Ecological history affects zooplankton community responses to acidification. Ecology, 82, 2984–3000.

    Article  Google Scholar 

  • Frost, T. M., Montz, P. K., & Kratz, T. K. (1998). Zooplankton community responses during recovery from acidification: limited persistence by acid-favoured species in Little Rock Lake, Wisconsin. Restoration Ecology, 6, 336–342.

    Article  Google Scholar 

  • Fryer, G. (1993). Variation in acid tolerance of certain freshwater crustaceans in different natural waters. Hydrobiologia, 250, 119–125.

    Article  CAS  Google Scholar 

  • Havas, M., & Likens, G. E. (1985). Changes in 22Na influx and outflux in Daphnia magna (Straus) as a function of elevated Al concentrations in soft water at low pH. Proceedings of the National Academy of Sciences of the United States of America, 82, 7345–7349.

    Article  CAS  Google Scholar 

  • Havas, M., & Rosseland, B. O. (1995). Response of zooplankton, benthos, and fish to acidification: an overview. Water, Air, and Soil Pollution, 85, 51–62.

    Article  CAS  Google Scholar 

  • Havens, K. E., & Heath, R. T. (1989). Acid and aluminum effects on freshwater zooplankton: an in situ mesocosm study. Environmental Pollution, 62, 195–211.

    Article  CAS  Google Scholar 

  • Havens, K. E., Yan, N. D., & Keller, W. (1993). Lake acidification: effects on crustacean zooplankton populations. Environmental Science and Technology, 27, 1621–1624.

    Article  CAS  Google Scholar 

  • Holt, C. A., Yan, N. D., & Somers, K. M. (2003). pH 6 as the threshold to use in critical load modeling for zooplankton community change with acidification in lakes of south-central Ontario: accounting for morphometry and geography. Canadian Journal of Fisheries and Aquatic Sciences, 60, 151–158.

    Article  Google Scholar 

  • Ito, M., Mitchell, M. J., & Driscoll, C. T. (2002). Spatial patterns of precipitation quantity and chemistry and air temperature in the Adirondack region of New York. Atmospheric Environment, 36, 1051–1062.

    Article  CAS  Google Scholar 

  • Jenkins, J., Roy, K., Driscoll, C., & Buerkett, C. (2005). Acid rain and the Adirondacks: a research summary. Ray Brook (NY): Adirondack Lakes Survey Corporation.

    Google Scholar 

  • Keller, W. T. (1979). Management of wild and hybrid brook trout in New York lakes, ponds and coastal streams. Albany: New York State Department of Environmental Conservation.

    Google Scholar 

  • Keller, W., & Pitblado, J. R. (1984). Crustacean plankton in northeastern Ontario lakes subjected to acid deposition. Water, Air, and Soil Pollution, 23, 271–291.

    Article  CAS  Google Scholar 

  • Keller, W., & Yan, N. D. (1998). Biological recovery from acidification: zooplankton communities as a model of patterns and processes. Restoration Ecology, 6, 364–375.

    Article  Google Scholar 

  • Keller, W., Yan, N. D., Somers, K. M., & Heneberry, J. H. (2002). Crustacean zooplankton communities in lakes recovering from acidification. Canadian Journal of Fisheries and Aquatic Sciences, 59, 726–735.

    Article  CAS  Google Scholar 

  • Kretser, W., Gallagher, J., & Nicolette, J. (1989). Adirondack Lakes Study 1984–1987: an evaluation of fish communities and water chemistry. Ray Brook (NY): Adirondack Lakes Survey Corporation.

    Google Scholar 

  • Lawrence, G. B. (2002). Persistent episodic acidification of streams linked to acid rain effects on soil. Atmospheric Environment, 36, 1589–1598.

    Article  CAS  Google Scholar 

  • Lawrence, G. B., Lincoln, T., Horan-Ross, D. A., Olson, M. L., Waldron, L. A. (1995). Analytical methods of the U.S. Geological Survey’s New York District water-analysis laboratory; U.S. Geological Survey: Reston, VA.

  • Lawrence, G. B., Roy, K. M., Baldigo, B. P., Simonin, H. A., Capone, S. B., Sutherland, J. W., Nierzwicki-Bauer, S. A., & Boylen, C. W. (2008). Chronic and episodic acidification of Adirondack streams from acid rain in 2003–2005. Journal of Environmental Quality, 37, 2264–2274.

    Article  CAS  Google Scholar 

  • Marmorek, D. R., & Korman, J. (1993). The use of zooplankton in a biomonitoring program to detect lake acidification and recovery. Water, Air, and Soil Pollution, 69, 223–241.

    Article  CAS  Google Scholar 

  • Menard, S. (2001). Applied logistic regression analysis. SAGE University Papers Series 07-106. Thousand Oaks: SAGE.

    Google Scholar 

  • Momen, B., Lawrence, G. B., Nierzwicki-Bauer, S. A., Sutherland, J. W., Eichler, L. W., Harrison, J. P., & Boylen, C. W. (2006). Trends in summer chemistry linked to productivity in lakes recovering from acid deposition in the Adirondack region of New York. Ecosystems, 9, 1306–1317.

    Article  CAS  Google Scholar 

  • Monteith, D. T., Hildrew, A. G., Flower, R. J., Raven, P. J., Beaumont, W. R. B., Collen, P., Kreiser, A. M., Shilland, E. M., & Winterbottom, J. H. (2005). Biological responses to the chemical recovery of acidified fresh waters in the UK. Environmental Pollution, 137, 83–101.

    Article  CAS  Google Scholar 

  • Monteith, D. T., Stoddard, J. L., Evans, C. D., de Wit, H. A., Forsius, M., Hogasen, T., Wilander, A., Skjelkvale, B. L., Jeffries, D. S., Vuorenmaa, J., Keller, B., Kopacek, J., & Vesely, J. (2007). Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature, 450, 537–539.

    Article  CAS  Google Scholar 

  • Newton, R.M., and C.T. Driscoll. (1990). Classification of ALSC lakes. In: Adirondack lakes survey: an interpretive analysis of fish communities and water chemistry. 1984–1987. (pp 2–70, 72–91) Adirondack Lakes Survey Corporation: Ray Brook (NY).

  • Nierzwicki-Bauer, S. A., Boylen, C. W., Eichler, L. W., Harrison, J. P., Sutherland, J. W., Shaw, W., Daniels, R. A., Charles, D. F., Acker, F. W., Sullivan, T. J., Momen, B., & Bukaveckas, P. (2010). Acidification in the Adirondacks: defining the biota in trophic levels of 30 chemically diverse acid-impacted lakes. Environmental Science and Technology, 44, 5721–5727.

    Article  CAS  Google Scholar 

  • Price, E. E., & Swift, M. C. (1985). Inter- and intra-specific variability in the response of zooplankton to acid stress. Canadian Journal of Fisheries and Aquatic Sciences, 42, 1749–1754.

    Article  Google Scholar 

  • Roff, J. C., & Kwiatkowski, R. E. (1977). Zooplankton and zoobenthos communities of selected northern Ontario lakes of different acidities. Canadian Journal of Zoology, 55, 899–911.

    Article  Google Scholar 

  • Schofield, C. L. (1965). Water quality in relation to survival of brook trout, Salvelinus fontinalis (Mitchill). Transactions of the American Fisheries Society, 94(3), 227–235.

    Article  Google Scholar 

  • Schofield, C. L. (1976). Acid precipitation: effects on fish. Ambio, 5, 228–230.

    Google Scholar 

  • Schofield, C. L., & Driscoll, C. T. (1987). Fish species distribution in relation to water quality gradients in the north branch of the Moose River basin. Biogeochemistry, 3, 63–85.

    Article  Google Scholar 

  • Siegfried, C. A., & Sutherland, J. W. (1992). Zooplankton communities of Adirondack lakes: changes in community structure associated with acidification. Journal Freshwater Ecology, 7, 97–112.

    Article  CAS  Google Scholar 

  • Sprules, W. G. (1975). Midsummer crustacean zooplankton communities in acid- stressed lakes. Journal of the Fisheries Research Board of Canada, 32, 389–395.

    Article  Google Scholar 

  • Stevens, P.M. (2008). Topographic index modeling of young-of-year brook trout (Salvelinus fontinalis) habitat and selecting candidate lakes for wild brook trout re-introduction. Master’s thesis. Cornell University, Ithaca.

  • Stoddard, J. L., Kahl, J. S., Deviney, F. A., DeWalle, D. R., Driscoll, C. T., Herlihy, A. T., Kellogg, J. H., Murdoch, P. S., & Webb, J. R. (2003). Air Act Amendments of 1990. Washington, DC: U.S. Environmental Protection Agency.

    Google Scholar 

  • Sullivan, T. J., Cosby, B. J., Herlihy, A. T., Driscoll, C. T., Fernandez, I. J., McDonnell, T. C., Boylen, C. W., Nierzwicki-Bauer, S. A., & Snyder, K. U. (2007). Assessment of the extent to which intensively-studied lakes are representative of the Adirondack region and response to future changes in acidic deposition. Water, Air, and Soil Pollution, 185, 279–291.

    Article  CAS  Google Scholar 

  • Swets, J. A. (1988). Measuring the accuracy of diagnostic systems. Science, 240, 1285–1293.

    Article  CAS  Google Scholar 

  • Tipping, E., Bass, J. A. B., Hardie, D., Haworth, E. Y., Hurley, M. A., & Wils, G. (2002). Biological responses to the reversal of acidification in surface waters of the English Lake District. Environmental Pollution, 116, 137–146.

    Article  CAS  Google Scholar 

  • US Environmental Protection Agency. (1987). Handbook of methods for acid deposition studies: laboratory analysis for surface water chemistry. EPA/600/4-87/026. Washington, D.C: U.S. Environmental Protection Agency, Office of Research and Development.

    Google Scholar 

  • Van Sickle, J., Baker, J. P., Simonin, H. A., Baldigo, B. P., Kretser, W. A., & Sharpe, W. E. (1996). Episodic acidification of small streams in the northeastern United States: fish mortality in field bioassays. Ecological Applications, 6(2), 408–421.

    Article  Google Scholar 

  • Venne, H., & Magnan, P. (1995). The impact of intra and interspecific interactions on young-of-the-year brook charr, in temperate lakes. Journal of Fish Biology, 46, 669–686.

    Article  Google Scholar 

  • Vrba, J., Kopáček, J., Bittl, T., Nedoma, J., Štrojsová, A., Nedbalová, L., Kohout, L., & Fott, J. (2006). A key role of aluminum in phosphorus availability, food web structure, and plankton dynamics in strongly acidified lakes. Biologia Bratislava, 61, S441–S451.

    Article  CAS  Google Scholar 

  • Vuong, Q. H. (1989). Likelihood ratio tests for model selection and non-nested hypotheses. Econometrica, 57, 307–333.

    Article  Google Scholar 

  • Warby, R. A. F., Johnson, C. E., & Driscoll, C. T. (2005). Chemical recovery of surface waters across the northeastern United States from reduced inputs of acidic deposition: 1984–2001. Environmental Science and Technology, 39, 6548–6554.

    Article  CAS  Google Scholar 

  • Webster, D. A. (1961). An unusual lake of the Adirondack Mountains, New York. Limnology and Oceanography, 6(1), 88–90.

    Article  Google Scholar 

  • Yan, N. D., & Strus, R. (1980). Crustacean zooplankton communities of acidic, metal-contaminated lakes near Sudbury, Ontario. Canadian Journal of Fisheries and Aquatic Sciences, 37, 2282–2293.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Assistance in the field and laboratory was provided by Cornell University staff and students including B. Weidel, S. Krueger, A. Barbato, T. Treska, M. Compton, I. Kiraly, E. Camp, L. Resseguie, M. Pepper, A. Garcia, J. Harris, and numerous other personnel. The Adirondack League Club provided access to Honnedaga Lake and member Peter Grose organized the weekly collection of tributary water samples in the summers 2008 to 2010. Funding for this project was provided by the Adirondack League Club and the Adirondack Fishery Research Fund. Chemical analysis of water samples collected from 2000 to 2011 were analyzed by the Darrin Fresh Water Institute Keck Water Quality Laboratory and the US Geological Survey Water Science Center both located in Troy, NY. G. Lawrence provided comments on an earlier version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel C. Josephson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Josephson, D.C., Robinson, J.M., Chiotti, J. et al. Chemical and biological recovery from acid deposition within the Honnedaga Lake watershed, New York, USA. Environ Monit Assess 186, 4391–4409 (2014). https://doi.org/10.1007/s10661-014-3706-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-014-3706-9

Keywords

Navigation