Skip to main content
Log in

Almond shell activated carbon: adsorbent and catalytic support in the phenol degradation

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In this work, two technologies are studied for the removal of phenol from aqueous solution: dynamic adsorption onto activated carbon and photocatalysis. Almond shell activated carbon (ASAC) was used as adsorbent and catalytic support in the phenol degradation process. The prepared catalyst by deposition of anatase TiO2 on the surface of activated carbon was characterized by scanning electron microscopy, sorption of nitrogen, X-ray diffraction, Fourier transform infrared (FT-IR) spectroscopy, and pHZPC point of zero charge. In the continuous adsorption experiments, the effects of flow rate, bed height, and solution temperature on the breakthrough curves have been studied. The breakthrough curves were favorably described by the Yoon–Nelson model. The photocatalytic degradation of phenol has been investigated at room temperature using TiO2-coated activated carbon as photocatalyst (TiO2/ASAC). The degradation reaction was optimized with respect to the phenol concentration and catalyst amount. The kinetics of disappearance of the organic pollutant followed an apparent first-order rate. The findings demonstrated the applicability of ASAC for the adsorptive and catalytic treatment of phenol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abdessalem, O., Ahmed, W., & Mourad, B. (2012). Adsorption of bentazon on activated carbon prepared from Lawsonia inermis wood: equilibrium, kinetic and thermodynamic studies. Arab. J. Chem.. doi:10.1016/j.arabjc.2012.04.047.

    Google Scholar 

  • Abdessalem, O., Mourad, B., & Najwa, A. (2013a). Preparation, modification and industrial application of activated carbon from almond shell. J. Ind. Eng. Chem., 19(6), 2092–2099.

    Google Scholar 

  • Abdessalem, O., Mourad, B., Wassim, T., & Najwa, A. (2013b). Adsorptive removal of humic acid on activated carbon prepared from almond shell: approach for the treatment of industrial phosphoric acid solution. Desalin. Water Treat., 1–12.

  • Akbal, F., & Onar, A. N. (2003). Photocatalytic degradation of phenol. Environ. Monit. Assess., 83(3), 295–302.

    Article  CAS  Google Scholar 

  • Aksu, Z., & Gonen, F. (2004). Biosorption of phenol by immobilized activated sludge in a continuous packed bed: prediction of breakthrough curves. Process Biochem., 39(5), 599–613.

    Article  CAS  Google Scholar 

  • Antonio, D. M., Marianna, I., Paul, D. P., Danielle, R., Hassan, K. O., & Michele, A. (2013). Adsorption of phenols from olive oil waste waters on layered double hydroxide, hydroxyaluminium-iron-co-precipitate and hydroxyaluminium-iron-montmorillonite complex. Appl. Clay Sci., 80, 154–161.

    Google Scholar 

  • Ao, Y., Xu, Fu, J. D., Shen, X., & Yuan, C. (2008). Low temperature preparation of anatase TiO2-coated activated carbon. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 312(2-3), 125–130.

    Article  CAS  Google Scholar 

  • Arbuj, S. S., Hawaldar, R. R., Mulik, U. P., Wani, B. N., Amalnerkar, D. P., & Waghmode, S. B. (2010). Preparation, characterization and photocatalytic activity of TiO2 towards methylene blue degradation. Mater. Sci. Eng. B, 168(1–3), 90–94.

    Article  CAS  Google Scholar 

  • Ba-Abbad, M. M., Kadhum, A. A. H., Mohamad, A. B., Takriff, M. S., & Sopian, K. (2012). Synthesis and catalytic activity of TiO2 nanoparticles for photochemical oxidation of concentrated chlorophenols under direct solar radiation. Int. J. Electrochem. Sci., 7, 4871–4888.

    CAS  Google Scholar 

  • Babu, B.V., & Gupta, S. (2004). Modeling and simulation for dynamic of packed bed adsorption. Proceedings of International Symposium & 57th Annual session of IIChE in Association with AIChE (CHEMCON-2004), Mumbai, December 27–30.

  • Babu, B. V., & Gupta, S. (2005). Modeling and simulation of fixed bed adsorption column: effect of velocity variation. J. Eng. Technol., 1, 60–66.

    Google Scholar 

  • Baetz, R. L., & Iangphasuk, M. (1997). Photocatalytic decolourization of reactive azo dye: a comparison between TiO2 and us photocatalysis. Chemosphere, 35(3), 585–596.

    Article  Google Scholar 

  • Banat, F. A., Al-Bashir, B., Al-Asheh, S., & Hayajneh, O. (2000). Adsorption of phenol by bentonite. Environ. Pollut., 107(3), 391–398.

    Article  CAS  Google Scholar 

  • Barrera, A., Tzompantzi, F., Padilla, J. M., Casillas, J. E., Jácome-Acatitla, G., Cano, M. E., & Gómez, R. (2014). Reusable PdO/Al2O3–Nd2O3 photocatalysts in the UV photodegradation of phenol. Appl. Catal. B Environ., 144, 362–368.

    Article  CAS  Google Scholar 

  • Bódalo, A., Gómez, E., Hidalgo, A. M., Gómez, M., Murcia, M. D., & López, I. (2009). Nanofiltration membranes to reduce phenol concentration in wastewater. Desalination, 245(1–3), 680–686.

    Article  Google Scholar 

  • Bohart, G. S., & Adams, E. Q. (1920). Behavior of charcoal towards chlorine. J. Chem. Soc., 42, 523–529.

    Article  CAS  Google Scholar 

  • Bouzid, J., Elouear, Z., Ksibi, M., Feki, M., & Montiel, A. (2008). A study on removal characteristics of copper from aqueous solution by sewage sludge and pomace ashes. J. Hazard. Mater., 152(2), 838–845.

    Article  CAS  Google Scholar 

  • Calace, N., Nardi, E., Petronio, B. M., & Pietroletti, M. (2002). Adsorption of phenols by paper mill sludges. Environ. Pollut., 118(3), 315–319.

    Article  CAS  Google Scholar 

  • Chu, K. H. (2004). Improved fixed-bed models for metal biosorption. Chem. Eng. J., 97(2–3), 233–239.

    Article  CAS  Google Scholar 

  • Cornelia, P., Georgeta, M., Adriana, P., Simona, G. M., & Robert, I. (2013). Adsorption of phenol and p-chlorophenol from aqueous solutions on poly (styrene-co-divinylbenzene) functionalized materials. Chem. Eng. J., 222, 218–227.

    Article  Google Scholar 

  • Daneshvar, N., Salari, D., & Khataee, A. R. (2003). photocatalytic degradation of azo dye acid red 14 in water: investigation of the effect of operational parameters. J. Photochem. Photobiol. A Chem., 157(1), 111–116.

    Article  CAS  Google Scholar 

  • Derylo-Marczewska, A., Marczewski, A. W., Winter, S., & Sternik, D. (2010). Studies of adsorption equilibria and kinetics in the systems: aqueous solution of dyes-mesoporous carbons. Appl. Surf. Sci., 256(17), 5164–5170.

    Article  CAS  Google Scholar 

  • Duan, X., Ma, F., Yuan, Z., Jin, L. X., & Yuan, Z. (2013). Electrochemical degradation of phenol in aqueous solution using PbO2 anode. J. Taiwan. Inst. Chem. Eng., 44(1), 95–102.

    Article  CAS  Google Scholar 

  • Esplugas, S., Gimenez, J., Contreras, S., Pascual, E., & Rodriguez, M. (2002). Comparison of different advanced oxidation processes for phenol degradation. Water Res., 36(4), 1034–1042.

    Article  CAS  Google Scholar 

  • Fang, H. H. P., & Chan, O. C. (1997). Toxicity of phenol towards anaerobic biogranules. Water Res., 31(9), 2229–2242.

    Article  CAS  Google Scholar 

  • Gülensoy, H. (1984). Kompleksometrenin esaslarıve kompleksometrik titrasyonlar (pp. 76–77). İstanbul: Fatih Yayınevi Matbaası.

    Google Scholar 

  • Gupta, V. K., Ali, I., & Saini, V. K. (2004). Removal of chlorophenols from wastewater using red mud: an aluminum industry waste. Environ. Sci Technol., 38(14), 4012–4018.

    Article  CAS  Google Scholar 

  • Khan, A. R., Al-Bahri, T. A., & Al-Haddad, A. (1997). Adsorption of phenol based organic pollutants on activated carbon from multi-component dilute aqueous solutions. Water Res., 31(8), 2102–2112.

    Article  CAS  Google Scholar 

  • Knop, A., & Pilato, L. A. (1985). Phenolic resins—Chemistry, Applications and Performance. Berlin: Springer.

    Google Scholar 

  • Ko, D. C., Porter, J. F., & McKay, G. (2001). Film-pore diffusion model for the fixed-bed sorption of copper and cadmium ions onto bone char. Water Res, 35(16), 3876–3886.

    Article  CAS  Google Scholar 

  • Li, Y., Li, L., Li, C., Chen, W., & Zeng, M. (2012). Carbon nanotube/titania composites prepared by a micro-emulsion method exhibiting improved photocatalytic activity. Appl. Catal. A Gen., 427, 1–7.

    Article  Google Scholar 

  • Liao, H. T., & Shian, C. Y. (2000). Analytical solution to an axial dispersion model for the fixed-bed adsorber. AIChE J, 46(6), 1168–1176.

    Article  CAS  Google Scholar 

  • Lin, S. H., Chiou, C. H., Chang, C. K., & Juang, R. S. (2011). Photocatalytic degradation of phenol on different phases of TiO2 particles in aqueous suspensions under UV irradiation. J. Environ. Manag., 92(12), 3098–3104.

    Article  CAS  Google Scholar 

  • Liu, S. X., Chen, X. Y., & Chen, X. (2007). A TiO2/AC composite photocatalyst with high activity and easy separation prepared by a hydrothermal method. J. Hazard. Mater., 143(1–2), 143–263.

    Google Scholar 

  • Martín, R., Navalon, S., Alvaro, M., & Garcia, H. (2011). Optimized water treatment by combining catalytic Fenton reaction using diamond supported gold and biological degradation. Appl. Catal. B Environ., 103(1–2), 246–252.

    Article  Google Scholar 

  • Matos, J., Laine, J., Herrmann, J. M., Uzcategui, D., & Brito, J. L. (2007). Influence of activated carbon upon titania on aqueous photocatalytic consecutive runs of phenol photodegradation. Appl. Catal. B Environ., 70(1–4), 461–469.

    Article  CAS  Google Scholar 

  • Mourad, B., & Bellagi, A. (1990). Détermination des propriétés du réseau poreux de matériau argileux par les techniques d’adsorption d’azote et de porosimétrie au mercure en vue de leur utilisation pour la récupération des gaz. Ann. Chim., 15, 315–335.

    Google Scholar 

  • Munesh, S., & Meena, R. C. (2012). Photocatalytic degradation of textile dye through an alternative photocatalyst methylene blue immobilized resin dowex 11 in presence of solar light. Arch. Appl. Sci. Res., 4(1), 472–479.

    CAS  Google Scholar 

  • Nakamoto, K. (1986). Infrared and Raman spectra of inorganic and coordination compounds. New York: Wiley.

    Google Scholar 

  • Neppolian, B., Choi, H. C., Sakthivel, S., Arabindoo, B., & Murugesan, V. (2002). Solar/UV-induced photocatalytic degradation of three commercial textile dyes. J. Hazard. Mater., 89(2–3), 303–317.

    Article  CAS  Google Scholar 

  • Ozkaya, B. (2006). Adsorption and desorption of phenol on activated carbon and a comparison of isotherm models. J. Hazard. Mater., 129(1–3), 158–163.

    Article  Google Scholar 

  • Smith, E. H., & Amini, A. (2000). Lead removal in fixed beds by recycled iron material. J. Environ. Eng., 12, 58–65.

    Article  Google Scholar 

  • Spurr, R. A., & Myers, H. (1957). Quantitative analysis of anatase-rutile mixtures with an X-ray diffractometer. Anal. Chem., 29(5), 760–762.

    Article  CAS  Google Scholar 

  • Toyoda, M., Nanbu, Y., Nakazawa, Y., Hirano, M., & Inagaki, M. (2004). Effect of crystallinity of anatase on photoactivity for methylene blue decomposition in water. Appl. Catal. B Environ., 49(4), 227–232.

    Article  CAS  Google Scholar 

  • Tsai, W. T., Lee, M. K., Su, T. Y., & Chang, Y. M. (2009). Photodegradation of bisphenol-A in a batch TiO2 suspension reactor. J. Hazard. Mater., 168(1), 269–275.

    Article  CAS  Google Scholar 

  • Velasco, L. F., Parra, J. B., & Ania, C. O. (2010). Role of activated carbon features on the photocatalytic degradation of phenol. Appl. Surf. Sci., 256(17), 5254–5258.

    Article  CAS  Google Scholar 

  • Vijayaraghavan, K., Jegan, J., Palanivelu, & Velan, K. M. (2004). Removal of nickel (II) ions from aqueous solution using crab shell particles in a packed bed up flow column. J. Hazard. Mater., 113(1–3), 223–230.

    Article  CAS  Google Scholar 

  • Wang, X., Hu, Z., Chen, Y., Zhao, G., Liu, Y., & Wen, Z. (2009a). A novel approach towards high-performance composite photocatalyst of TiO2 deposited on activated carbon. Appl. Surf. Sci., 255(7), 3953–3958.

    Article  CAS  Google Scholar 

  • Wang, X., Liu, Y., Hu, Z., Chen, Y., Liu, W., & Zhao, G. (2009b). Degradation of methyl orange by composite photocatalysts nano-TiO2 immobilized on activated carbons of different porosities. J. Hazard. Mater., 169(1–3), 1061–1067.

    Article  CAS  Google Scholar 

  • Wang, Z., Chen, Y., Zhou, C., Whiddon, R., Zhang, Y., Zhou, J., & Cen, K. (2011a). Decomposition of hydrogen iodide via wood-based activated carbon catalysts for hydrogen production. Int. J. Hydrog. Energy, 36(1), 216–223.

    Article  CAS  Google Scholar 

  • Wang, B., Li, Q., Wang, W., Li, Y., & Zhai, J. (2011b). Preparation and characterization of Fe3+-doped TiO2 on fly ash cenospheres for photocatalytic application. Appl. Surf. Sci., 257(8), 3473–3479.

    Article  CAS  Google Scholar 

  • Yan, G., & Viraraghavan, T. (2001). Heavy metal removal in a biosorption column by immobilized M. rouxii biomass. Bioresour. Technol., 78(3), 243–249.

    Article  CAS  Google Scholar 

  • Yoon, Y. H., & Nelson, J. H. (1984). Application of gas adsorption kinetics. Part 1. A theoretical model for respirator cartridge service time. Am. Ind. Hyg. Assoc. J., 45(8), 509–516.

    Article  CAS  Google Scholar 

  • Youji, L., Xiaoming, Z., Wei, C., Leiyong, L., Mengxiong, Z., Shidong, Q., & Shuguo, S. (2012). Photodecolorization of rhodamine B on tungsten-doped TiO2/activated carbon under visible-light irradiation. J. Hazard. Mater., 227, 25–33.

    Google Scholar 

  • Yu, J., Yu, G. H. G. B., Cheng, Z., X, J., Yu, J. C., & Ho, W. K. (2003). The effect of calcination temperature on the surface microstructure and photocatalytic activity of TiO2 thin films prepared by liquid phase deposition. J. Phys. Chem. B, 107(5), 13871–13879.

    Article  CAS  Google Scholar 

  • Yu, J., Zhou, M., Cheng, B., & Zhao, X. (2006). Preparation, characterization and photocatalytic activity of in situ N, S-codoped TiO2 powders. J. Mol. Catal. A Chem., 246(1–2), 176–184.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the Ministry of Higher Education and Scientific Research for the financial support to the current work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdessalem Omri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Omri, A., Benzina, M. Almond shell activated carbon: adsorbent and catalytic support in the phenol degradation. Environ Monit Assess 186, 3875–3890 (2014). https://doi.org/10.1007/s10661-014-3664-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-014-3664-2

Keywords

Navigation