Skip to main content
Log in

Coupling of solvent-based de-emulsification dispersive liquid–liquid microextraction with high performance liquid chromatography for simultaneous simple and rapid trace monitoring of 2,4-dichlorophenoxyacetic acid and 2-methyl-4-chlorophenoxyacetic acid

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

A simple, rapid, and efficient sample pretreatment technique, based on solvent-based de-emulsification dispersive liquid–liquid microextraction (SD-DLLME), followed by high performance liquid chromatography (HPLC) has been developed for simultaneous preconcentration and trace detection of 2,4-dichlorophenoxyacetic acid (2,4-D) and 2-methyl-4-chlorophenoxyacetic acid (MCPA) in water and urine samples. Some parameters such as acidity of solution, the amount of salt, type, and volume of extraction solvents, type of disperser/de-emulsifier solvent, and its volume were investigated and optimized. Under optimum extraction conditions, the limits of detections (LODs) of this method for MCPA and 2,4-D were 0.2 and 0.6 μg L−1 (based on 3Sb/m) in water and 0.4 and 1.6 μg L−1 in urine, respectively. Furthermore, dynamic linear range of this method for MCPA and 2,4-D was 1–300 and 2–400 μg L−1, repectively. Finally, the applicability of the proposed method was evaluated by extraction and determination of the herbicides in urine and different water samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adlnasab, L., Ebrahimzadeh, H., & Yamini, Y. (2012). A three phase dispersive liquid-liquid microextraction technique for the extraction of antibiotics in milk. Microchimica Acta, 179, 179–184.

    Article  CAS  Google Scholar 

  • Biesaga, M., Jankowska, A., & Pyrzyńska, K. (2005). Comparison of different sorbents for solid-phase extraction of phenoxyalkanoic acid herbicides. Microchimica Acta, 150, 317–322.

    Article  CAS  Google Scholar 

  • Canizares, P., Martinez, F., Jimenez, C., Saez, C., & Rodrigo, M. A. (2008). Coagulation and electrocoagulation of oil-in-water emulsions. Journal of Hazardous Materials, 15, 144–151.

    Google Scholar 

  • Carvalho, F. P. (2006). Agriculture, pesticides, food security and food safety. Environmental Science and Policy, 9, 685–692.

    Article  Google Scholar 

  • Catalina, M. I., Dalluge, J., Vreuls, R. J. J., & Brinkman, U. A. T. (2000). Determination of chlorophenoxy acid herbicides in water by in situ esterification followed by in-vial liquid–liquid extraction combined with large-volume on-column injection and gas chromatography–mass spectrometry. Journal of Chromatography A, 877, 153–166.

    Article  CAS  Google Scholar 

  • Chen, H., Chen, R. W., & Li, S. Q. (2010). Low-density extraction solvent-based solvent terminated dispersive liquid–liquid microextraction combined with gas chromatography-tandem mass spectrometry for the determination of carbamate pesticides in water samples. Journal of Chromatography A, 1217, 1244–1248.

    Article  CAS  Google Scholar 

  • Cooper, J., & Dobson, H. (2007). The benefits of pesticides to mankind and the environment. Crop Protection, 26, 1337–1348.

    Article  CAS  Google Scholar 

  • Dong, M., Ma, Y., Zhao, E., Qian, C., Han, L., & Jiang, S. (2009). Using multiwalled carbon nanotubes as solid phase extraction adsorbents for determination of chloroacetanilide herbicides in water. Microchimica Acta, 165, 123–128.

    Article  CAS  Google Scholar 

  • Farajzadeh, M. A., Bahram, M., Ghorbani Mehr, B., & Jönsson, J. Å. (2008). Optimization of dispersive liquid–liquid microextraction of copper (II) by atomic absorption spectrometry as its oxinate chelate: Application to determination of copper in different water samples. Talanta, 75, 832–840.

    Article  CAS  Google Scholar 

  • Farran, A., Serraa, C., & Sepaniak, M. J. (1999). Three different approaches for the separation of MCPA and 2,4-D by capillary electrophoresis. Journal of Chromatography A, 835, 209–215.

    Article  CAS  Google Scholar 

  • Fielding, M., Barcelo, D., Helweg, A., Galassi, S., Torstensson, L., van Zoonen, P., et al. (1992). Water Pollution Research Report 27. Brussels: Commission of the European Communities.

    Google Scholar 

  • Hamilton, D. J., Ambrus, A., Dieterle, R. M., Felsot, A. S., Harris, C. A., Holland, P. T., et al. (2003). Regulatory limits for pesticides in water. IUPAC Technical Report, Pure and Applied Chemistry, 75, 1123–1155.

    Article  CAS  Google Scholar 

  • Jesús Lerma-García, M., Zougagh, M., & Ríos, A. (2013). Magnetic molecular imprint-based extraction of sulfonylurea herbicides and their determination by capillary liquid chromatography. Microchimica Acta, 180, 363–370.

    Article  Google Scholar 

  • Katagi, T., & Whitacre, D. M. (2010). Springer Science, New York, 1-132.

  • Liu, J. F., Toräng, L., Mayer, P., & Åke Jönsson, J. (2007). Passive extraction and clean-up of phenoxy acid herbicides in samples from a groundwater plume using hollow fiber supported liquid membranes. Journal of Chromatography A, 1160, 56–63.

    Article  CAS  Google Scholar 

  • Liu, Y., Zhao, E., Zhu, W., Gao, H., & Zhou, Z. (2009). Determination of four heterocyclic insecticides by ionic liquid dispersive liquid–liquid microextraction in water samples. Journal of Chromatography A, 1216, 885–891.

    Article  CAS  Google Scholar 

  • Majidi, B., & Shemirani, F. (2012). Solvent-based de-emulsification dispersive liquid–liquid microextraction of palladium in environmental samples and determination by electrothermal atomic absorption spectrometry. Talanta, 93, 245–251.

    Article  CAS  Google Scholar 

  • Nagaraju, D., & Huang, S. D. (2007). Determination of triazine herbicides in aqueous samples by dispersive liquid–liquid microextraction with gas chromatography–ion trap mass spectrometry. Journal of Chromatography A, 1161, 89–97.

    Article  CAS  Google Scholar 

  • National Primary Drinking Water Regulations, Office of Water, U.S. Environmental Protection Agency, Washington, DC, May 2009.

  • Nilsson, T., Baglio, D., Galdo-Miguez, I., Madsen, J. Ø., & Facchetti, S. (1998). Derivatisation/solid-phase microextraction followed by gas chromatography–mass spectrometry for the analysis of phenoxy acid herbicides in aqueous samples. Journal of Chromatography A, 826, 211–216.

    Article  CAS  Google Scholar 

  • Pena-Pereira, F., Lavilla, I., & Bendicho, C. (2009). Miniaturized preconcentration methods based on liquid–liquid extraction and their application in inorganic ultratrace analysis and speciation: a review. Spectrochimica Acta, Part B, 64, 1–15.

    Article  Google Scholar 

  • Pereiro, I. R., Irimia, R. G., Cano, E. R., & Tottijos, R. C. (2004). Optimization of a gas chromatographic–mass spectrometric method for the determination of phenoxy acid herbicides in water samples as silyl derivatives. Analytica Chimica Acta, 524, 249–256.

    Article  Google Scholar 

  • Quintana, J. B., Rodil, R., Muniategui-Lorenzo, S., Lopez-Mahia, P., & Prada-Rodriguez, D. (2007). Multiresidue analysis of acidic and polar organic contaminants in water samples by stir-bar sorptive extraction–liquid desorption–gas chromatography–mass spectrometry. Journal of Chromatography A, 1174, 27–39.

    Article  CAS  Google Scholar 

  • Rezaei, F., Bidari, A., Pajand Birjandi, A., Milani Hosseini, M. R., & Assadi, Y. (2008). Development of a dispersive liquid–liquid microextraction method for the determination of polychlorinated biphenyls in water. Journal of Hazardous Materials, 158, 621–627.

    Article  CAS  Google Scholar 

  • Rodriguez, I., Rubi, E., Gonzalez, R., Quintana, J. B., & Cela, R. (2005). On-fibre silylation following solid-phase microextraction for the determination of acidic herbicides in water samples by gas chromatography. Analytica Chimica Acta, 537, 259–266.

    Article  CAS  Google Scholar 

  • Shah, F., Kazi, T. G., Naeemullah, Afridi, H. I., & Soylak, M. (2012). Temperature controlled ionic liquid-dispersive liquid phase microextraction for determination of trace lead level in blood samples prior to analysis by flame atomic absorption spectrometry with multivariate optimization. Microchemical Journal, 101, 5–10.

    Article  CAS  Google Scholar 

  • Soylak, M., & Yilmaz, E. (2011). Ionic liquid dispersive liquid-liquid microextraction of lead as pyrrolidine dithiocarbamate chelate prior to its flame atomic absorption spectrometric determination. Desalination, 275, 297–301.

    Article  CAS  Google Scholar 

  • Soylak, M., & Yilmaz, E. (2013). Ionic liquid-based method for microextraction-enrichment of gold from real samples and determination by flame atomic absorption spectrometry. Atomic Spectroscopy, 34, 15–19.

    CAS  Google Scholar 

  • Tabani, H., Fakhari, A. R., Shahsavani, A., Behbahani, M., Salarian, M., Bagheri, A., et al. (2013). Combination of graphene oxide-based solid phase extraction and electro membrane extraction for the preconcentration of chlorophenoxy acid herbicides in environmental samples. Journal of Chromatography A, 1300, 227–235.

    Article  CAS  Google Scholar 

  • Vassilakis, I., Tsipi, D., & Scoullos, M. (1998). Determination of a variety of chemical classes of pesticides in surface and ground waters by off-line solid-phase extraction, gas chromatography with electron-capture and nitrogen–phosphorus detection, and high-performance liquid chromatography with post-column derivatization and fluorescence detection. Journal of Chromatography A, 823, 49–58.

    Article  CAS  Google Scholar 

  • Wu, J., & Lee, H. K. (2006). Injection port derivatization following ion-pair hollow fiber-protected liquid-phase microextraction for determining acidic herbicides by gas chromatography/mass spectrometry. Analytical Chemistry, 78, 7292–72301.

    Article  CAS  Google Scholar 

  • Xiong, C., Ruan, J., Cai, Y., & Tang, Y. (2009). Extraction and determination of some psychotropic drugs in urine samples using dispersive liquid–liquid microextraction followed by high-performance liquid chromatography. Journal of Pharmaceutical and Biomedical Analysis, 49, 572–578.

    Article  CAS  Google Scholar 

  • Zacharis, C. K., Tzanavaras, P. D., Roubos, K., & Dhima, K. (2010). Solvent-based de-emulsification dispersive liquid–liquid microextraction combined with gas chromatography–mass spectrometry for determination of trace organochlorine pesticides in environmental water samples. Journal of Chromatography A, 1217, 5896–5900.

    Article  CAS  Google Scholar 

  • Zeeb, M., Ganjali, M. R., & Norouzi, P. (2010). Dispersive liquid-liquid microextraction followed by spectrofluorimetry as a simple and accurate technique for determination of thiamine (vitamin B1). Microchimica Acta, 168, 317–324.

    Article  CAS  Google Scholar 

  • Zhou, Q., & Ye, C. (2008). Ionic liquid for improved single-drop microextraction of aromatic amines in water samples. Microchimica Acta, 162, 153–159.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akbar Bagheri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Behbahani, M., Najafi, F., Bagheri, S. et al. Coupling of solvent-based de-emulsification dispersive liquid–liquid microextraction with high performance liquid chromatography for simultaneous simple and rapid trace monitoring of 2,4-dichlorophenoxyacetic acid and 2-methyl-4-chlorophenoxyacetic acid. Environ Monit Assess 186, 2609–2618 (2014). https://doi.org/10.1007/s10661-013-3564-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-013-3564-x

Keywords

Navigation