Skip to main content

Advertisement

Log in

Spatial and temporal variation of moisture content in the soil profiles of two different agricultural fields of semi-arid region

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Modeling spatio-temporal variation of soil moisture with depth in the soil profile plays an important role for semi-arid crop production from an agro-hydrological perspective. This study was performed in Guvenc Catchment. Two soil series that were called Tabyabayir (TaS) and Kervanpinari (KeS) and classified as Leptosol and Vertisol Soil Groups were used in this research. The TeS has a much shallower (0–34 cm) than the KeS (0–134 cm). At every sampling time, a total of geo-referenced 100 soil moisture samples were taken based on horizon depths. The results indicated that soil moisture content changed spatially and temporally with soil texture and profile depth significantly. In addition, land use was to be important factor when soil was shallow. When the soil conditions were towards to dry, higher values for the coefficient of variation (CV) were observed for TaS (58 and 43 % for A and C horizons, respectively); however, the profile CV values were rather stable at the KeS. Spatial variability range of TaS was always higher at both dry and wet soil conditions when compared to that of KeS. Excessive drying of soil prevented to describe any spatial model for surface horizon, additionally resulting in a high nugget variance in the subsurface horizon for the TaS. On the contrary to TaS, distribution maps were formed all horizons for the KeS at any measurement times. These maps, depicting both dry and wet soil conditions through the profile depth, are highly expected to reduce the uncertainty associated with spatially and temporally determining the hydraulic responses of the catchment soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bardossy, A., & Lehmann, W. (1998). Spatial distribution of soil moisture in a small catchment. Part I: geostatistical analysis. Journal of Hydrology, 206, 1–15.

    Article  CAS  Google Scholar 

  • Bergkamp, G., Cammeraat, L. H., & Martinez-Fernandez, J. (1996). Water movement and vegetation patterns on shrubland and an abandoned field in two desertification-threatened areas in Spain. Earth Surface Processes, 21, 1073–1090.

    Article  Google Scholar 

  • Blake, G. R., & Hartge, K. H. (1986). Bulk Density: Laboratory Methods. In A. Klute (Ed.), Methods of soil analysis, part I—physical and mineralogical methods (2nd ed., Vol. Monograph no. 9, pp. 363–375). Madison, Wisconsin, USA: ASA and SSSA Agronomy.

    Google Scholar 

  • Bouyoucos, G. J. (1951). A recalibration of the hydrometer method for making mechanical analysis of soils. Agronomy Journal, 43, 435–438.

    Google Scholar 

  • Brocca, L., Morbidelli, R., Melone, F., & Moramarco, T. (2007). Soil moisture spatial variability in experimental areas of central Italy. Journal of Hydrology, 333, 356–373.

    Article  Google Scholar 

  • Cerda, A. (1995). Spatial distribution of infiltration on the motorral slopes in a mediterreanen environment. In R. Fantechi, D. Peter, P. Blabanis, & J. L. Rubio (Eds.), Desertification in European context: physical and socio-economic impacts (pp. 427–436). Genoves, Spain: European Commission.

    Google Scholar 

  • Cosh, M. H., Stedinger, J. R., & Brutsaert, W. (2004). Variability of surface soil moisture at the watershed scale. Water Resources Research, 40, W12513. doi:10.1029/2004WR003487.

    Article  Google Scholar 

  • Crave, A., & Gascuel-Odoux, C. (1997). The influence of topography on time and space distribution of soil surface water content. Hydrological Processes, 11, 203–210.

    Article  Google Scholar 

  • De Lannoy, G. J. M., Verhoest, N. E. C., Houser, P. R., Gish, T. J., & Meirvenne, M. V. (2006). Spatial and temporal characteristics of soil moisture in an intensively monitored agricultural field (OPE3). Journal of Hydrology, 331, 719–730.

    Article  Google Scholar 

  • Dengiz, O., & Baskan, O. (2005). Basic properties and classification of Guvenc basin soil. Selcuk. Uni Journal of the Faculty of Agriculture, 19, 27–36 (in Turkish).

    Google Scholar 

  • Endale, D. M., Fisher, D. S., & Schomberg, H. H. (2005). Soil water regime in space and time in a small Georgia Piedomont catchment under pasture. Soil Science Society of America Journal, 70, 1–13.

    Article  Google Scholar 

  • Entekhabi, D., Rodriguez-Iturbe, I., & Castelli, F. (1996). Mutual interaction of soil moisture state and atmospheric processes. Journal of Hydrology, 184, 3–17.

    Article  CAS  Google Scholar 

  • Entin, J. K., Robock, A., Vinnikov, K. Y., Hollinger, S. E., Liu, S., & Namkai, A. (2000). Temporal and spatial scales of observed soil moisture variations in the extratropics. Journal of Geophysical Research, 105, 865–877.

    Article  Google Scholar 

  • Famiglietti, J. S., Devereaux, J. A., Laymon, C. A., Tsegaye, T., Houser, P. R., Jackson, T. J., Graham, S. T., Rodell, M., & van Oevelen, P. J. (1999). Ground-based investigation of soil moisture variability within remote sensing footprints during the Southern Great Plains 1997 (SGP97) Hydrology Experiment. Water Resources Research, 35, 1839–1851.

    Article  CAS  Google Scholar 

  • FAO/ISRIC. (2006). World references base for soil resources (Vol. 103). Rome: World Soil Rep. 128.

    Google Scholar 

  • Fernandez, G. J., Simmonds, L. P., & Barohon, E. (2006). Estimating detailed soil water profile records from point measurements. European Journal of Soil Science, 57, 708–718.

    Google Scholar 

  • Fernandez-Illescas, C. P., Porporato, A., Laio, F., & Rodriguez-Iturbe, I. (2001). The ecohydrological role of soil texture in a water-limited ecosystem. Water Resources Research, 37, 2863–2872.

    Article  Google Scholar 

  • Fitzjohn, C., Ternan, J. L., & Williams, A. G. (1998). Soil moisture variability in a semi-arid gully catchment: implications for runoff and erosion control. Catena, 32, 55–70.

    Article  Google Scholar 

  • Gardner, W. H. (1986). Water content. In Klute, A., ed., “Methods of Soil Analysis, Part 1: Physical and Mineralogical Methods”, Monograph No. 9, Am. Soc. Argon. Madison, WI.

  • Georgakakos, K. P. (1996). Soil moisture theories and observations, J. Hydrol., 184 (special issue).

  • Gleick, P. H. (1996). Water Resources. In S. H. Schneider (Ed.), Encyclopedia of climate and water (Vol. 2, pp. 817–823). New York: Oxford University Press.

    Google Scholar 

  • Gomez-Plaza, A., Martinez-Mena, M., Albaladejo, J., & Castillo, V. M. (2001). Factors regulating spatial distribution of soil water content in semiarid catchments. Journal of Hydrology, 253, 211–226.

    Article  Google Scholar 

  • Grayson, R. B., & Western, A. W. (1998). Towards areal estimation of soil water content from point measurements: time and space stability of mean response. Journal of Hydrology, 207, 68–82.

    Article  CAS  Google Scholar 

  • Grayson, R. B., Western, A. W., Chiew, F. H. S., & Blöschl, G. (1997). Preferred states in spatial soil moisture patterns: local and nonlocal controls. Water Resources Research, 33, 2897–2908.

    Article  Google Scholar 

  • Hillel, D. (1998). Environmental soil physics. San Diego, USA: Academic. 765 p.

    Google Scholar 

  • Hupet, F., & Vanclooster, M. (2002). Intraseasonal dynamics of soil moisture variability within a small agricultural maize cropped field. Journal of Hydrology, 261(1–4), 86–101.

    Article  Google Scholar 

  • Isaaks, H. E., & Srivastava, R. M. (1989). An introduction to applied geostatistics. New York: Oxford University Press. 561 p.

    Google Scholar 

  • Kemper, W. D., Koch, E. J. (1966). Aggregate stability of soils from western United States of America and Canada. Colorado Agric. Exp. Stn. Bull. 1355. USDA-ARS and Colorado Agric. Exp. Stn.,. Fort Collins, CO.

  • Klute, A. (1986). Water retention. In Klute, A., ed., “Methods of Soil Analysis, Part 1: Physical and Mineralogical Methods”, Monograph No. 9, pp. 635-662, Am. Soc. Argon. Madison, WI.

  • Klute, A., & Dirksen, C. (1986). Hydraulic conductivity and diffusivity. In Klute, A., ed., “Methods of Soil Analysis, Part 1: Physical and Mineralogical Methods”, Monograph No. 9, pp.687-732. Am. Soc. Argon. Madison, WI.

  • Martinez-Fernandez, J., & Ceballos, A. (2003). Temporal stability of soil moisture in a large-field experiment in Spain. Soil Science Society of America Journal, 67, 1647–1656.

    Article  CAS  Google Scholar 

  • McBratney, A. B. (1992). On variation, uncertainty and informatics in environmental soil management. Australian Journal of Soil Research, 30, 913–935.

    Article  Google Scholar 

  • Mohanty, B. P., Skaggs, T. H., & Famiglietti, J. S. (2000). Analysis and mapping of field-scale soil moisture variability using high resolution ground based data during the Southern Great Plains 1997 (SGP97) hydrology experiment. Water Resources Research, 36, 1023–1032.

    Article  Google Scholar 

  • Pachepsky, Y. A., Timlin, D. J., & Rawls, W. J. (2001). Soil water retention as related to topographic variables. Soil Science Society of America Journal, 65, 1787–1795.

    Article  CAS  Google Scholar 

  • Petrone, R., Price, J., Carey, S., & Waddington, J. (2004). Statistical characterization of the spatial variability of soil moisture in a cutover peatland. Hydrological Processes, 18, 41–52.

    Article  Google Scholar 

  • Pinherio, J., Bates, D., DebRoy, S., Sarkar, D., the R Development Core Team (2009). nlme: Linear and nonlinear mixed effects models. R package version 3.1-9. Available at cran.r-project.org/web/packages/nlme/index.html (verified 13 July 2011). Inst. For Stat. and Math., Vienna Univ. of Econ. and Business, Vienna, Austria.

  • Sawarowsky, A., Dahlgren, R. A., Tate, K. W., Hopmans, J. W., & O’Geen, A. T. (2011). Catchment-Scale soil water dynamics in a Mediterranean type oak woodland. Vadose Zone Journal, 10, 800–815.

    Article  Google Scholar 

  • Teuling, A., & Troch, P. (2005). Improved understanding of soil moisture variability dynamics. Geophysical Research Letters, 32, L05404.1–L05404.4.

    Google Scholar 

  • Vachaud, G., Passerat de Silans, A., Balabanis, P., & Vauclin, M. (1985). Temporal stability of spatially measured soil water probability density function. Soil Science Society of America Journal, 49, 822–828.

    Article  Google Scholar 

  • Vinnikov, K. Y., Robock, A., Speranskaya, N. A., & Schlosser, C. A. (1996). Scales of temporal and spatial variability of midlatitude soil moisture. Journal of Geophysical Research, 101, 7163–7174.

    Article  Google Scholar 

  • Webster, R., & Payne, R. W. (2002). Analyzing repeated measurements in soil monitoring and experimentation. European Journal of Soil Science, 53(1), 1–13.

    Article  Google Scholar 

  • Weng, E., & Luo, Y. (2008). Soil hydrological properti es regulate grassland ecosystem responses to multi factor global change: a modeling analysis. Journal of Geophysical Research, 113, G03003.

    Article  Google Scholar 

  • Western, A. W., & Grayson, R. B. (1998). The Tarrawarra data set: soil moisture patterns, soil characteristics, and hydrological flux measurements. Water Resources Research, 34(10), 2765–2768.

    Article  Google Scholar 

  • Western, A. W., Blöschl, G., & Grayson, R. B. (1998). How well do indicator variograms capture the spatial connectivity of soil moisture? Hydrological Processes, 12, 1851–1868.

    Article  Google Scholar 

  • Western, A. W., Grayson, R. B., Blöschl, G., & Wilson, D. J. (2003). Spatial variability of soil moisture and its implication for scaling. In Y. Pachepsky, D. E. Radcliffe, & H. M. Selim (Eds.), Scaling methods in soil physics (pp. 119–142). Boca Raton, FL: CRC.

    Google Scholar 

  • Williams, A. G., Ternan, J. L., Fitzjohn, C., de Alba, S., & Perez-Gonzalez, A. (2003). Soil moisture variability and land use in a seasonally arid environment. Hydrological Processes, 17, 225–235.

    Article  Google Scholar 

  • Yoo, C., Valdés, J. B., & North, G. R. (1998). Evaluation of the impact of rainfall on soil moisture variability. Advances in Water Resources, 21, 375–384.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oguz Baskan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baskan, O., Kosker, Y. & Erpul, G. Spatial and temporal variation of moisture content in the soil profiles of two different agricultural fields of semi-arid region. Environ Monit Assess 185, 10441–10458 (2013). https://doi.org/10.1007/s10661-013-3343-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-013-3343-8

Keywords

Navigation