Skip to main content
Log in

Elemental composition of sediments in Lake Jinzai, Japan: Assessment of sources and pollution

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Bottom sediments from Lake Jinzai in southwest Japan were analyzed to determine their chemical compositions and to assess the potential for ecological harm by comparison with sediment quality guidelines. The pollution status of lake sediments was evaluated by employing contamination factor (CF), pollution load index (PLI), and geoaccumulation index (I geo), focusing on a suite of elements in lakebed and core sediments. Elevated concentrations of As, Pb, Zn, Cu, TOC, N, and P were present in several layers of the upper core and other surface sediments. The elevated metal concentrations are likely related to the fine-grained nature of the sediments, reducing bottom conditions produced by abundant organic matter, and possibly minor non-point anthropogenic sources. Moreover, correlations between the concentrations of trace metals and organic carbon, nitrogen, phosphorus, and iron, suggest that these elements play a role in controlling abundances. Calculated CF, PLI, and I geo indicate that the sediments are strongly polluted with respect to As, moderately to strongly polluted with Zn, and moderately polluted with Pb and Cu. Metal concentrations exceed the New York State Department of Environmental Conservation (NYSDEC) lowest effect level and the Canadian Council of Ministers of the Environment (CCME) interim sediment quality guidelines that indicate moderate impact on aquatic organisms in the study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmed, F., Bibi, M. H., Seto, K., Ishiga, H., Fukushima, T., & Roser, B. P. (2010). Abundances, distribution, and sources of trace metals in Nakaumi-Honjo coastal lagoon sediments, Japan. Environmental Monitoring and Assessment, 167, 473–491. doi:10.1007/s10661-009-1065-8.

    Article  CAS  Google Scholar 

  • Ahmed, F., Bibi, M. H., Fukushima, T., Seto, K., & Ishiga, H. (2011). Recent sedimentary environment of coastal lagoon in southwestern Japan: Evidence from major and trace elements. Environmental Monitoring and Assessment, 173, 167–180. doi:10.1007/s10661-010-1379-6.

    Article  CAS  Google Scholar 

  • SAIC (Science Applications International Corporation, Canada). (2002). Compilation and review of Canadian remediation guidelines, standards and regulations (Final Report, B187-413, p. 79). Emergencies Engineering Technologies Office (EETO)–Environment Canada.

  • Berner, R. A., & Raiswell, R. (1984). C/S method for distinguishing freshwater from marine sedimentary rocks. Geology, 12, 365–368.

    Article  CAS  Google Scholar 

  • Bibi, M. H., Ahmed, F., & Ishiga, H. (2007). Assessment of metal concentrations in lake sediments of southwest Japan based on sediment quality guidelines. Environmental Geology, 52(4), 625–639. doi:10.1007/s00254-006-0492-x.

    Article  CAS  Google Scholar 

  • Bibi, M. H., Ahmed, F., Ishiga, H., Asaeda, T., & Fujino, T. (2010). Present environment of Dam lake Sambe, southwestern Japan: a geochemical study of bottom sediments. Environmental Earth Sciences, 60, 655–670. doi:10.1007/s12665-009-0205-3.

    Article  CAS  Google Scholar 

  • CCME (Canadian Council of Ministers of the Environments, Canada) (1998). Canadian sediment quality guidelines for the protection of aquatic life: Introduction and summary tables. In Canadian sediment quality guidelines. Winnipeg, Manitoba: CCME.

  • Chandrajith, R. L. R., Okumura, M., & Hashitani, H. (1995). Human influence on the Hg pollution in Lake Jinzai, Japan. Applied Geochemistry, 10, 229–235. doi:10.1016/0883-2927(94)00042-5.

    Article  CAS  Google Scholar 

  • EBGMSP (Editorial Board of Geological Map of Shimane Prefecture). (1997). Geological map of Shimane Prefecture at 1:200,000. Tokyo: Naigai-Chizu.

    Google Scholar 

  • Esen, E., Kucuksezgin, F., & Uluturhan, E. (2010). Assessment of trace metal pollution in surface sediments of Nemrut Bay, Aegean Sea. Environmental Monitoring and Assessment, 160, 257–266. doi:10.1007/s10661-008-0692-9.

    Article  CAS  Google Scholar 

  • Håkanson, L. (1980). An ecological risk index for aquatic pollution control—a sedimentological approach. Water Research, 14, 975–1001. doi:10.1016/0043-1354(80)90143-8.

    Article  Google Scholar 

  • Ishiga, H., Nakamura, T., Sampei, Y., Tokuoka, T., & Takayasu, K. (2000a). Geochemical record of the Holocene Jomon transgression and human activity in coastal lagoon sediments of the San’in district, SW Japan. Global and Planetary Change, 25, 223–237. doi:10.1016/S0921-8181(00)00005-9.

    Article  Google Scholar 

  • Ishiga, H., Mihara, A., & Sampei, Y. (2000b). Environmental geology of Lake Zaike, Koryo-cho, Shimane Prefecture. Japan. Geoscience Reports of Shimane University, 19, 47–55 (in Japanese with English abstract).

    CAS  Google Scholar 

  • Liaghati, T., Preda, M., & Cox, M. (2003). Heavy metal distribution and controlling factors within coastal plain sediments, Bells Creek catchment, southeast Queensland, Australia. Environment International, 29, 935–948. doi:10.1016/S0160-4120(03)00060-6.

    Article  Google Scholar 

  • Long, E. R., Field, L. J., & MacDonald, D. D. (1998). Predicting toxicity in marine sediments with numerical sediment quality guidelines. Environmental Toxicology and Chemistry, 17, 714–727. doi:10.1897/1551-5028(1998)017.

    Article  CAS  Google Scholar 

  • Meyers, P. A. (1997). Organic geochemical proxies of paleooceanographic, paleolimnologic and paleoclimatic processes. Organic Geochemistry, 27, 213–250. doi:10.1016/S0146-6380(97)00049-1.

    Article  CAS  Google Scholar 

  • Müller, G. (1969). Index of geoaccumulation in sediments of the Rhine River. Geological Journal, 2, 108–118.

    Google Scholar 

  • NYSDEC (New York State Department of Environmental Conservation) (1999). Technical guidance for screening contaminated sediments (p. 45). Albany, NY: NYSDEC, Division of Fish, Wildlife and Marine Resources.

  • Ogasawara, M. (1987). Trace element analysis of rock samples by X-ray fluorescence spectrometry, using Rh anode tube. Bulletin of the Geological Survey of Japan, 38(2), 57–68.

    CAS  Google Scholar 

  • Ortiz, E., & Roser, B. P. (2006). Major and trace element provenance signatures in stream sediments from the Kando River, San’in district, southwest Japan. Island Arc, 15, 223–238. doi:10.1111/j.1440-1738.2006.00523.x.

    Article  CAS  Google Scholar 

  • Potts, P. J., Tindle, A. G., Webb, P. C. (1992). Geochemical reference material compositions (p. 313). Caithness: Whittles.

  • Rubio, B., Nombela, M. A., & Vilas, F. (2000). Geochemistry of major and trace elements in sediments of the Ria de Vigo (NW Spain): an assessment of metal pollution. Marine Pollution Bulletin, 40(11), 968–980. doi:S0025-326X(00)00039-4.

    Article  CAS  Google Scholar 

  • Ruiz-Fernández, A. C., Hillaire-Marcel, C., Páez-Osuna, F., Ghaleb, B., & Soto-Jiménez, M. (2003). Historical trends of metal pollution recorded in the sediments of the Culiacan River Estuary, Northwestern Mexico. Applied Geochemistry, 18, 577–588. doi:10.1016/S0883-2927(02)00117-8.

    Article  Google Scholar 

  • Ruiz-Fernández, A. C., Frignani, M., Hillaire-Marcel, C., Ghaleb, B., Arvizu, M. D., Raygoza-Viera, J. R., et al. (2009). Trace metals (Cd, Cu, Hg, and Pb) accumulation recorded in the intertidal mudflat sediments of three coastal lagoons in the Gulf of California, Mexico. Estuaries and Coasts, 32, 551–564. doi:10.1007/s12237-009-9150-3.

    Article  Google Scholar 

  • Sampei, Y., Matsumoto, E., Kamei, T., & Tokuoka, T. (1997). Sulfur and organic carbon relationship in sediments from coastal brackish lakes in the Shimane peninsula district, southwest Japan. Geochemical Journal, 31, 245–262.

    Article  CAS  Google Scholar 

  • Tessier, A., Carignan, R., & Belzile, N. (1994). Processes occurring at the sediment–water interface: Emphasis on trace elements. In J. Buffle & R. R. DeVitre (Eds.), Chemical and biological regulation of aquatic system (pp. 137–173). Boca Raton, FL: Lewis.

    Google Scholar 

  • Togashi, S., Imai, N., Okuyama-Kusunose, Y., Tanaka, T., Okai, T., Koma, T., et al. (2000). Young upper crustal chemical composition of the orogenic Japan Arc. Geochemistry Geophysics Geosystems, 1(11), 1049. doi:10.1029/2000GC000083.

    Article  Google Scholar 

  • Tomlinson, D. L., Wilson, J. G., Harris, C. R., & Jeffrey, D. W. (1980). Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgoland Marine Research, 33, 566–575.

    Google Scholar 

  • USEPA (United States Environmental Protection Agency) (1998). National recommended water quality criteria; notice. Federal register/Dec 7, 1998, Part IV, EPA (FRL-OW-6186-6a) 63(234), 67548–67558.

  • Violintzis, C., Arditsoglou, A., & Voutsa, D. (2009). Elemental composition of suspended particulate matter and sediments in the coastal environment of Thermaikos Bay, Greece: Delineating the impact of inland waters and wastewaters. Journal of Hazardous Materials, 166, 1250–1260. doi:10.1016/j.jhazmat.2008.12.046.

    Article  CAS  Google Scholar 

  • Wedepohl, K. H. (1995). The composition of the continental crust. Geochimica Cosmochimica Acta, 59, 1217–1232.

    Article  CAS  Google Scholar 

  • Yamada, K., Takata, H., & Takayasu, K. (2004). Holocene paleoenvironmental changes recorded in lacustrine sediments of Lake Jinzai, Shimane Prefecture, western Japan. LAGUNA, 11, 135–145 (in Japanese with English abstract).

    Google Scholar 

  • Yang, H., & Rose, N. (2005). Trace element pollution records in some UK lake sediments, their history, influence factors and regional differences. Environment International, 31, 63–75. doi:10.1016/j.envint.2004.06.010.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Professor Yoshihiro Sawada of Shimane University for access to the XRF facilities, and to Emi Yokoi of Shimane University for her cooperation in sampling. The Jinzai Lake Authority gave permission to collect samples. This study was partly supported by a Research Grant-in-Aid from the Japan Society for the Promotion Science (JSPS), Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faruque Ahmed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmed, F., Bibi, M.H., Asaeda, T. et al. Elemental composition of sediments in Lake Jinzai, Japan: Assessment of sources and pollution. Environ Monit Assess 184, 4383–4396 (2012). https://doi.org/10.1007/s10661-011-2271-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-011-2271-8

Keywords

Navigation