Skip to main content

Advertisement

Log in

Improving Salmonella determination in Sinaloa rivers with ultrafiltration and most probable number methods

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Monitoring of waterborne pathogens is improved by using concentration methods prior to detection; however, direct microbial enumeration is desired to study microbial ecology and human health risks. The aim of this work was to determine Salmonella presence in river water with an ultrafiltration system coupled with the ISO 6579:1993 isolation standard method (UFS-ISO). Most probable number (MPN) method was used directly in water samples to estimate Salmonella populations. Additionally, the effect between Salmonella determination and water turbidity was evaluated. Ten liters or three tenfold dilutions (1, 0.1, and 0.01 mL) of water were processed for Salmonella detection and estimation by the UFS-ISO and MPN methods, respectively. A total of 84 water samples were tested, and Salmonella was confirmed in 64/84 (76%) and 38/84 (44%) when UFS-ISO and MPN were used, respectively. Salmonella populations were less than 5 × 103 MPN/L in 73/84 of samples evaluated (87%), and only three (3.5%) showed contamination with numbers greater than 4.5 × 104 MPN/L. Water turbidity did not affect Salmonella determination regardless of the performed method. These findings suggest that Salmonella abundance in Sinaloa rivers is not a health risk for human infections in spite of its persistence. Thus, choosing the appropriate strategy to study Salmonella in river water samples is necessary to clarify its behavior and transport in the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arvanitidou, M., Kanellou, K., & Vagiona, D. G. (2005). Diversity of Salmonella spp. and fungi in northern Greek rivers and their correlation to fecal pollution indicators. Environmental Research, 99(2), 278–284.

    Article  CAS  Google Scholar 

  • Bakunov, V. A., & Maiboroda, L. F. (2001). Ultrafiltration equipment using hollow fibers and areas of application. Fibre Chemistry, 33(2), 145–149.

    Article  CAS  Google Scholar 

  • Baudart, J., Lemarchand, K., Brisabois, A., & Lebaron, P. (2000). Diversity of Salmonella strains isolated from the aquatic environment as determined by serotyping and amplification of the ribosomal DNA spacer regions. Applied and Environmental Microbiology, 66(4), 1544–1552.

    Article  CAS  Google Scholar 

  • Brettar, I., & Höfle, M. G. (2008). Molecular assessment of bacterial pathogens—a contribution to drinking water safety. Current Opinion in Biotechnology, 19(3), 274–280.

    Article  CAS  Google Scholar 

  • Dirección General de Epidemiología, DGEPI. (2009). Casos por enfermedades infecciosas y parasitarias del aparato digestivo (Cuadro 4). Vigilancia epidemiológica semana 52, 2009. Available at http://www.dgepi.salud.gob.mx/boletin/2009/sem52/index.htm. Accessed 02 Dec 2010.

  • Francy, D. S., Bushon, R. N., Brady, A. M., Bertke, E. E., Kephart, C. M., Likirdopulos, C. A., et al. (2009). Comparison of traditional and molecular analytical methods for detecting biological agents in raw and drinking water following ultrafiltration. Journal of Applied Microbiology, 107(5), 1479–1491.

    Article  CAS  Google Scholar 

  • Grassi, T., Bagordo, F., Idolo, A., Lugoli, F., Gabutti, G., & De Donno, A. (2010). Rotavirus detection in environmental water samples by tangential flow ultrafiltration and RT-nested PCR. Environmental Monitoring and Assessment, 164(1–4), 199–205.

    Article  CAS  Google Scholar 

  • Haas, C., Rose, J., & Gerba, C. (1999). Quantitative microbial risk assessment. New York: Wiley.

    Google Scholar 

  • Haley, B. J., Cole, D. J., & Lipp, E. K. (2009). Distribution, diversity, and seasonality of waterborne salmonellae in a rural watershed. Applied and Environmental Microbiology, 75(5), 1248–1255.

    Article  CAS  Google Scholar 

  • Hernandez-Morga, J., Leon-Felix, J., Peraza-Garay, F., Gil-Salas, B. G., & Chaidez, C. (2009). Detection and characterization of hepatitis A virus and norovirus in estuarine water samples using ultrafiltration–RT-PCR integrated methods. Journal of Applied Microbiology, 106(5), 1579–1590.

    Article  CAS  Google Scholar 

  • Hill, V. R., Polaczyk, A. L., Hahn, D., Narayanan, J., Cromeans, T. L., Roberts, J. M., et al. (2005). Development of a rapid method for simultaneous recovery of diverse microbes in drinking water by ultrafiltration with sodium polyphosphate and surfactants. Applied and Environmental Microbiology, 71(11), 6878–6884.

    Article  CAS  Google Scholar 

  • Hill, V. R., Polaczyk, A. L., Kahler, A. M., Cromeans, T. L., Hahn, D., & Amburgey, J. E. (2009). Comparison of hollow-fiber ultrafiltration to the USEPA VIRADEL technique and USEPA method 1623. Journal of Environmental Quality, 38(2), 822–825.

    Article  CAS  Google Scholar 

  • International Organization for Standardization, ISO 6579:1993. (1993). Microbiology: general guidance on methods for the detection of Salmonella, 3rd ed. Geneva: International Organization for Standardization.

  • Jenkins, M. B., Endale, D. M., & Fisher, D. S. (2008). Most probable number methodology for quantifying dilute concentrations and fluxes of Salmonella in surface waters. Journal of Applied Microbiology, 104(6), 1562–1568.

    Article  CAS  Google Scholar 

  • Knappett, P. S., Layton, A., McKay, L. D., Williams, D., Mailloux, B. J., Huq, M. R., et al. (2010). Efficacy of hollow-fiber ultrafiltration for microbial sampling in groundwater. Ground Water, 49, 53–65.

    Article  Google Scholar 

  • Leskinen, S. D., & Lim, D. V. (2008). Rapid ultrafiltration concentration and biosensor detection of enterococci from large volumes of Florida recreational water. Applied and Environmental Microbiology, 74(15), 4792–4798.

    Article  CAS  Google Scholar 

  • Leskinen, S. D., Brownell, M., Lim, D. V., & Harwood, V. J. (2010). Hollow-fiber ultrafiltration and PCR detection of human-associated genetic markers from various types of surface water in Florida. Applied and Environmental Microbiology, 76(12), 4116–4117.

    Article  CAS  Google Scholar 

  • Malorny, B., Hoorfar, J., Bunge, C., & Helmuth, R. (2003). Multicenter validation of the analytical accuracy of Salmonella PCR: towards an international standard. Applied and Environmental Microbiology, 69, 290–296.

    Article  CAS  Google Scholar 

  • Martinez-Urtaza, J., Saco, M., de Novoa, J., Perez-Piñeiro, P., Peiteado, J., Lozano-Leon, A., et al. (2004). Influence of environmental factors and human activity on the presence of Salmonella serovars in a marine environment. Applied and Environmental Microbiology, 70(4), 2089–2097.

    Article  CAS  Google Scholar 

  • MINITAB® Inc. (2004). Minitab release version 14.1. MINITAB® Inc.

  • Morales-Morales, H. A., Vidal, G., Olszewski, J., Rock, C. M., Dasgupta, D., Oshima, K. H., et al. (2003). Optimization of a reusable hollow-fiber ultrafilter for simultaneous concentration of enteric bacteria, protozoa, and viruses from water. Applied and Environmental Microbiology, 69(7), 4098–4102.

    Article  CAS  Google Scholar 

  • Mull, B., & Hill, V. R. (2009). Recovery and detection of Escherichia coli O157:H7 in surface water, using ultrafiltration and real-time PCR. Applied and Environmental Microbiology, 75(11), 3593–3597.

    Article  CAS  Google Scholar 

  • Olszewski, J., Winona, L., & Oshima, K. H. (2005). Comparison of 2 ultrafiltration systems for the concentration of seeded viruses from environmental waters. Canadian Journal of Microbiology, 51(4), 295–303.

    Article  CAS  Google Scholar 

  • Payment, P., & Pintar, K. (2006). Waterborne pathogens: a critical assessment of methods, results and data analysis. Journal of Water Science, 19(3), 233–245.

    Google Scholar 

  • Peskoller, C., Niessner, R., & Seidel, M. (2009). Cross-flow microfiltration system for rapid enrichment of bacteria in water. Analytical and Bioanalytical Chemistry, 393(1), 399–404.

    Article  CAS  Google Scholar 

  • Prüss, A. (1998). Review of epidemiological studies on health effects from exposure to recreational water. International Journal of Epidemiology, 27(1), 1–9.

    Article  Google Scholar 

  • United States Department of Agriculture, USDA. (2008). Most probable number procedure and tables. Available at http://www.fsis.usda.gov/PDF/MLG_Appendix_2_03.pdf. Accessed 02 Dec 2010.

  • Winona, L. J., Ommani, A. W., Olszewski, J., Nuzzo, J. B., & Oshima, K. H. (2001). Efficient and predictable recovery of viruses from water by small scale ultrafiltration systems. Canadian Journal of Microbiology, 47(11), 1033–1041.

    Article  CAS  Google Scholar 

  • World Health Organization, WHO. (2003). Emerging issues in water and infectious disease. Available at http://www.who.int/water_sanitation_health/emerging/emerging.pdf. Accessed 02 Dec 2010.

  • World Health Organization, WHO. (2008). Guidelines for drinking-water quality [electronic resource]: Incorporating 1 st and 2nd addenda, vol. 1, recommendations.–3rd ed. Available at http://www.who.int/water_sanitation_health/dwq/fulltext.pdf. Accessed 02 Dec 2010.

  • World Health Organization, WHO. (2009). Global health risks. Mortality and burden of disease attributable to selected major risks. Available at http://www.who.int/healthinfo/global_burden_disease/GlobalHealthRisks_report_full.pdf. Accessed 02 Dec 2010.

  • Yoder, J. S., Hlavsa, M. C., Craun, G. F., Hill, V., Roberts, V., Yu, P. A., et al. (2008). Surveillance for waterborne disease and outbreaks associated with recreational water use and other aquatic facility-associated health events—United States, 2005–2006. Morbidity and Mortality Weekly Report, MMWR, 57, 1–29. Available at http://www.cdc.gov/mmwr/preview/mmwrhtml/ss5709a1.htm.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Fondos Mixtos de Fomento a la Investigación Científica CONACYT 2008–01:99609 Sinaloa. The authors thank Célida Martínez, Gabriela Gaxiola, and Jorge Manjarrez for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristobal Chaidez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jimenez, M., Chaidez, C. Improving Salmonella determination in Sinaloa rivers with ultrafiltration and most probable number methods. Environ Monit Assess 184, 4271–4277 (2012). https://doi.org/10.1007/s10661-011-2262-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-011-2262-9

Keywords

Navigation