Skip to main content
Log in

Groundwater contamination evolution in the Guadiamar and Agrio aquifers after the Aznalcóllar spill: assessment and environmental implications

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In 1998, the Agrio and Guadiamar rivers underwent an enormous environmental disaster caused by the rupture of the Aznalcóllar tailings dam and the release of 6 hm3 of pyrite sludge and acidic water. Both rivers run over recent alluvial materials which form a small-sized aquifer which is however important because underground water feeds the flow of the rivers. This work analyzes the state of groundwater 10 years after the spill. Before the dam failure, this aquifer was already contaminated in the zone nearest to the mine, to which the impact of the spill was added. Contamination levels in the alluvial aquifer of the Agrio River have decreased remarkably. However, they are still important, with acidic pH values and high concentrations of toxic elements (maximum values of 16 mg/L of Zn and 15 mg/L of Al). There are also important levels of contamination in the Guadiamar alluvial area closest to the mine, as well as in specific zones located further south. The concentration of toxic elements is mainly controlled by pH. The evolution of contaminant levels show a sharp decrease after the first years following the spill, followed by a subsequent stabilization. It is necessary to take measures for the recovery of the aquifer because, otherwise, groundwater will continue contributing contaminants into the Agrio and Guadiamar rivers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aguilar, J., Dorronsoro, C., Fernández, E., Fernández, J., García, I., Martin, F., et al. (2007). Remediation of As-contaminanted soils in the Guadiamar River Basin (SW, Spain). Water, Air, and Soil Pollution, 180, 109–118.

    Article  CAS  Google Scholar 

  • Alcolea, A., Ayora, C., Bernet, O., Bolzicco, J., Carrera, J., Cortina, J. L., et al. (2001). Barrera geoquímica. Boletín Geológico y Minero, 112, 229–256.

    Google Scholar 

  • Alastuey, A., García-Sánchez, A., López, F., & Querol, X. (1999). Evolution of pyrite mud weathering and mobility of heavy metals in the Guadiamar valley after the Aznalcóllar spill, south-west Spain. Science of the Total Environment, 242, 41–55.

    Article  CAS  Google Scholar 

  • Alvarez-Ayuso, E., García-Sánchez, A., Querol, X., & Moyano, A. (2008). Trace element mobility in soils seven years after the Aznalcóllar mine spill. Chemosphere, 73, 1240–1246.

    Article  CAS  Google Scholar 

  • Appelo, C. A. J., & Postma, D. (1999). Geochemistry, groundwater and pollution. Rotterdam: Balkema.

    Google Scholar 

  • Arambarri, P., Cabrera, F., & González-Quesada, R. (1996). Quality evaluation of the surface waters entering the Doñana National Park (SW Spain). Science of the Total Environment, 191, 185–196.

    Google Scholar 

  • Ayora, C., Bernet, O., Bolzicco, J., Carrera, J., Domènech, C., Cerón, J. C., et al. (2001). Hidrogeología del Valle del Guadiamar y zonas colindantes. Funcionamiento del sistema acuífero. Boletín Geológico y Minero, 112, 69–92.

    Google Scholar 

  • Ball, J.W., & Nordstrom, D.K. (1991). User's manual for WATEQ4F, with revised thermodynamic data base and test cases for calculating speciation of mayor, trace, and redox elements in natural waters. U.S. Geological Survey; Open File Report 91–183.

  • Bigham, J. M., Schwertmann, S. J., Traina, S., Winland, R. L., & Wolf, M. (1996). Schwertmannite and the chemical modelling of iron in acid sulfate waters. Geochimica et Cosmochimica Acta, 60, 2111–2121.

    Article  CAS  Google Scholar 

  • Bolzicco, J., Carrera, J., & Ayora, C. (2004). Eficiencia de la barrera permeable reactive de Aznalcóllar (Sevilla; España) como remedio de aguas ácidas de mina. Revista Latino-Americana de Hidrogeología, 4, 27–34.

    Google Scholar 

  • Cabrera, F., Toca, C. G., Diaz, E., & Arambarri, P. (1984). Acid mine water and agricultural pollution in a river skirting the Doñana National Park (Guadiamar River, South West Spain). Water Research, 18, 1469–1482.

    Article  CAS  Google Scholar 

  • Cabrera, F., Soldevilla, M., Cordón, R., & Arambarri, P. (1987). Heavy metal pollution in the Guadiamar River and the Guadalquivir estuary (South West Spain). Chemosphere, 16, 463–468.

    Article  CAS  Google Scholar 

  • Dzombak, D. A., & Morel, F. M. M. (1990). Surface complexation modeling. Hydrous ferric oxide. New York: Wiley-Interscience.

    Google Scholar 

  • Fernández, I., Olías, M., Cerón, J. C., & De la Rosa, J. (2004). Application of lead stable isotopes to the Guadiamar aquifer study after the mine tailings spill in Aznalcóllar (SW Spain). Environmental Geology, 47, 197–204.

    Article  Google Scholar 

  • Galán, E., González, I., & Fernández-Caliani, J. C. (2002). Residual pollution load of soils impacted by the Aznalcóllar (Spain) mining spill after clean-up operations. Science of the Total Environment, 286, 167–179.

    Article  Google Scholar 

  • García-Luque, E., Forja, J. M., Delvalls, T. A., & Gómez-Parra, A. (2003). The behaviour of heavy metals from the Guadalquivir estuary alter the Aznalcóllar mining spill: Field and laboratory surveys. Environmental Monitoring and Assessment, 83, 71–88.

    Article  Google Scholar 

  • Garrido, H. (2008). Guadiamar, ciencia, técnica y restauración. El accidente minero 10 años después. Madrid: CSIC.

  • Hudson-Edwards, K. A., Maclin, M. G., Jamieson, H. E., Brever, P. A., Coulthard, T. J., Howard, A. J., et al. (2003). The impact of tailings dam spills and clean-up operations on sediment and water quality in river systems; the Ríos Agrio-Guadiamar, Aznalcóllar, Spain. Applied Geochemistry, 18, 221–239.

    Article  CAS  Google Scholar 

  • Hudson-Edwards, K. A., Jamieson, H. E., Charnock, J. M., & Macklin, M. G. (2005). Arsenic speciation in waters and sediments of ephemeral floodplain pools, ríos Agrio-Guadiamar, Aznalcóllar, Spain. Chemical Geology, 219, 175–192.

    Article  CAS  Google Scholar 

  • Kraus, U., & Wiegand, J. (2006). Long-term effects of the Aznalcóllar mine spill—heavy metal content and mobility in soils and sediments of the Guadiamar River valley (SW Spain). Science of the Total Environment, 367, 855–871.

    Article  CAS  Google Scholar 

  • Madejón, P., Murillo, J. M., Marañón, T., & Cabrera, F. (2006). Bioaccumulation of trace elements in a wild grass three years after the Aznalcóllar mine spill (South Spain). Environmental Monitoring and Assessment, 114, 169–189.

    Article  Google Scholar 

  • Manzano, M., Ayora, C., Domenech, C., Navarrete, P., Garralon, A., & Turrero, M. J. (1999). The impact of the Aznalcóllar mine tailing spill on groundwater. Science of the Total Environment, 242, 189–209.

    Article  CAS  Google Scholar 

  • Manzano, M., Soler, A., Carrera, J., & Custodio, E. (2001). Composición isotópica (δ18O, δ2H y δ34S) de las aguas del área afectada por el vertido minero de Aznalcóllar (SO España). In A. Medina & J. Carreras (Eds.), Las Caras del Agua Subterráneas (pp. 477–487). Madrid: ITGE.

    Google Scholar 

  • Márquez-Ferrando, R., Santos, X., Pleguezuelos, J. M., & Ontiveros, D. (2009). Bioaccumulation of Heavy Metals in the Lizard Psammodromus algirus after a tailing-dam collapse in Aznalcóllar (Southwest Spain). Archives of Environmental Contamination and Toxicology, 56, 276–285.

    Article  Google Scholar 

  • Martin, J. E., García-Tenorio, R., Ontalba-Salamanca, M. A., Respaldiza, M. A., & Da Silva, M. F. (2000). TTPIXE analysis of Guadiamar river sediments collected before de the environmental disaster of 1998. Nuclear Instruments & Methods in Physics Research B, 161–163, 825–829.

    Article  Google Scholar 

  • Nordstrom, D. K., & Alpers, C. N. (1999). Geochemistry of acid mine waters. In G. S. Plumlee & M. J. Logson (Eds.), The environmental geochemistry of Mineral Deposit (pp 136–160). Littleton: Reviews in Economic Geology 6A.

    Google Scholar 

  • Olías, M., Cerón, J. C., Fernández, I., Moral, F., & Rodríguez-Ramírez, A. (2005). State of contamination of the waters in the Guadiamar valley five years after the Aznalcóllar spill. Water, Air, and Soil Pollution, 166, 103–119.

    Article  Google Scholar 

  • Olías, M., Cerón, J. C., Moral, F., & Ruiz, F. (2006). Water quality of the Guadiamar river after the Aznalcóllar spill (SW Spain). Chemosphere, 62, 213–225.

    Article  Google Scholar 

  • Parkhurst D.L., & Appelo, C.A.J. (1999). User's guide to phreeqc (Version 2)—A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. Water-Resources Investigation Report 99–4259. Denver: US Geological Survey.

  • Riba, I., Delvalls, T. A., Forja, J. M., & Gómez-Parra, A. (2002). Evaluating the heavy metal contamination in sediments from the Guadalquivir estuary after the Aznalcóllar mining spill (SW Spain): A multivariate analysis approach. Environmental Monitoring and Assessment, 77, 191–207.

    Article  CAS  Google Scholar 

  • Rotting, T. S., Carrera, J., Bolzicco, J., & Salvany, J. M. (2006). Stream-stage response and their joint interpretation with pumping tests. Ground Water, 44, 371–385.

    Article  CAS  Google Scholar 

  • Salvany, J. M., Carrera, J., Bolzicco, J., & Mediavilla, C. (2004). Pitfalls in the geological characterization of alluvial deposits: site investigation for reactive barrier instalation at Aznalcóllar, Spain. Quaterly Journal of Engineering Geology and Hydrogeolgy, 37, 141–154.

    Article  CAS  Google Scholar 

  • Sánchez López, F. J., García, M. D., Marnitez Vidal, J. L., Aguilera, P. A., & Frenich, A. G. (2004). Assessment of metal contamination in Doñana national park (Spain) using crayfish (Procamburus clarkii). Environmenal Monitoring and Assessment, 93, 17–29.

    Article  Google Scholar 

  • Simón, M., Ortiz, I., García, I., Fernández, E., Fernández, J., Dorronsoro, C., et al. (1999). Pollution of soils by the toxic spill of a pyrite mine (Aznalcóllar, Spain). Science of the Total Environment, 242, 105–115.

    Article  Google Scholar 

  • Simón, M., Diez, M., García, I., & Martín, F. (2009). Distribution of As and Zn in soils affected by the spill of a pyrite mine and effectiveness of the remediation measures. Water, Air, and Soil Pollution, 198, 77–85.

    Article  Google Scholar 

  • Turner, J. N., Brewer, P. A., & Macklin, M. G. (2008). Fluvial-controlled metal and As mobilization, dispersal and storage in the Río Guadiamar, SW Spain and its implications for long-term contaminant fluxes to the Doñana wetlands. Science of the Total Environment, 394, 144–161.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support for this work was provided by the project “Procesos de autodepuración natural en los ríos Agrio y Guadiamar y acuíferos subyacentes” financed by the “Consejería de Relaciones Institucionales” of the Andalusia Regional Government. The original manuscript was notably improved thanks to the comments and suggestions of two anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Olías.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olías, M., Moral, F., Galván, L. et al. Groundwater contamination evolution in the Guadiamar and Agrio aquifers after the Aznalcóllar spill: assessment and environmental implications. Environ Monit Assess 184, 3629–3641 (2012). https://doi.org/10.1007/s10661-011-2212-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-011-2212-6

Keywords

Navigation