Skip to main content
Log in

Major ion chemistry of shallow groundwater of a fast growing city of Central India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Nagpur City located in semiarid area of central India is a fast-growing industrial centre. In recent years, rapid development has created an increased demand for drinking water, which is increasingly being fulfilled by groundwater abstraction. The present study was undertaken to assess major ion chemistry of shallow groundwater to understand geochemical evolution of groundwater and water quality for promoting sustainable development and effective management of groundwater resources. A total of 47 water samples were collected from shallow aquifer of selected parts of the city and the water chemistry of various ions viz. Ca2 + , Mg2 + , Na + , K + , CO\(_{3}^{\ \, 2-}\), HCO\(_{3}^{\ \, -}\), Cl − , SO\(_{4}^{\ \,2-}\) and NO\(_{3}^{\ \,-}\) are carried out. The chemical relationships in Piper diagram identify Ca–HCO3–Cl and mixed Ca–Na–HCO3–Cl as most prevalent water types. Alkaline earth exceeds alkalis and weak acids exceed strong acids. Ionic ratios and Gibb’s diagram suggest that silicate rock weathering and anthropogenic activities are the main processes that determine the ionic composition in the study area. The nitrate appeared as a major problem of safe drinking water in this region. We recorded highest nitrate concentration, i.e., 411 mg/l in one of the dug well. A comparison of groundwater quality in relation to drinking water quality standards revealed that about half of the shallow aquifer samples are not suitable for drinking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • APHA (1992). Standard method for the examination of water and wastewater. American Public Health Association (18th ed.). New York: APHA.

    Google Scholar 

  • Appelo, C. A. J., & Postma, D. (1996). Geochemistry, groundwater and pollution (p. 536). Rotterdam: Balkema.

    Google Scholar 

  • Back, W., & Hanshaw, B. (1966). Hydrochemistry of the Northern Yucatan Peninsula, Mexico, with a section on Mayan water practices. In A. E. Weidie (Ed.), Field seminar on water carbonate rocks of the Yucatan Peninsula, Mexico (pp. 45–77). New Orleans Geological Society.

  • Bartarya, S. K. (1993). Hydrochemistry and rock weathering in a subtropical lesser Himalayan river basin in Kumaun, India. Journal of Hydrology, 146, 149–174.

    Article  CAS  Google Scholar 

  • Bhardwaj, V., Singh, D. S., & Singh, A. K. (2010). Hydrogeochemistry of groundwater and anthropogenic control over dolomitization reactions in alluvial sediments of the Deoria district: Ganga plain, India. Environmental Earth Science, 59, 1099–1109.

    Article  CAS  Google Scholar 

  • BIS (2003). Indian standard drinking water specifications (First Revision Incorporating Amendment No.1 January 1993 and Amendment No. 2 September 2003) IS 10500: 1991 Edition 2.2 (2003-09). Bureau of Indian Standards, New Delhi, India.

  • CGWB (1999). Occurrence of nitrate in ground water in Nagpur city area (p. 29). Unpublished Report, Central Ground Water Board, Central region Nagpur, Ministry of Water Resources, Government of India.

  • Choi, B. Y., Yun, S. T., Yu, S. Y., Lee, P. K., Park, S. S., Chae, G. T., et al. (2005). Hydrochemistry of urban groundwater in Seoul, South Korea: Effect of landuse and pollutant recharge. Environmental Geology, 48, 979–990.

    Article  CAS  Google Scholar 

  • Chow, V. T. (1964). Handbook of applied hydrology. New York: McGraw-Hill.

    Google Scholar 

  • Davis, S. N., & De Wiest, R. J. M. (1966). Hydrogeology (Vol. 463). New York: Wiley.

    Google Scholar 

  • Drever, J. I. (1988). The geochemistry of natural waters. New York: Prentice-Hall.

    Google Scholar 

  • Dixon, W., & Chiswell, B. (1992). The use of hydrochemical sections to identify recharge areas and saline intrusions in alluvial aquifers, southeast Queensland, Australia. Journal of Hydrology, 130, 299–338.

    Article  Google Scholar 

  • Dufor, C. N., & Becker, E. (1964). Public water supplies of the 100 largest cities in the US. Geological Survey water Supply paper, 1812, 364.

    Google Scholar 

  • Edmunds, W. M., Cook, J. M., Darling, W. G., Kinniburgh, D. G., Miles, D. L., Bath, A. H., et al. (1987). Baseline geochemical conditions in the Chalk aquifer, Berkshire, UK: A basis for groundwater quality management. Applied Geochememisty, 2, 251–274.

    Article  CAS  Google Scholar 

  • Gibbs, R. J. (1970). Mechanisms controlling world water chemistry. Science, 17, 1088–1090.

    Article  Google Scholar 

  • Gupta, S., Mahato, A., Roy, P., Datta, J. K., & Saha, R. N. (2008). Geochemistry of groundwater, Burdwan district, West Bengal, India. Environmental Geology, 53, 1271–1282.

    Article  CAS  Google Scholar 

  • Gupta, S., Dandele, P. S., Verma, M. B., & Maithani, P. B. (2009). Geochemical assessment of groundwater around Macherla-Karempudi area, Guntur District, Andhra Pradesh. Journal of the Geological Society of India, 73, 202–212.

    Article  CAS  Google Scholar 

  • Han, G., & Liu, C.-Q. (2004). Water geochemistry controlled by carbonate dissolution a study of the river waters draining Karst-dominated terrain, Guizhou province, China. Chemical Geology, 204, 1–21.

    Article  CAS  Google Scholar 

  • Handa, B. K. (1979). Groundwater pollution in India. In Proceedings of national symposium on hydrology (pp. 34–49). IAHS, Publication University of Roorkee, India.

    Google Scholar 

  • Hem, J. D. (1991). Study and interpretation of chemical characteristics of natural water (263) (3rd ed.). USGS Water-Supply Paper 2254.

  • Hidalgo, M. C., & Cruz-Sanjulian, J. (2001). Groundwater composition, hydrochemical evolution and mass transfer in a regional detrital aquifer (Baza basin, southern Spain). Applied Geochemistry, 16, 745–758.

    Article  CAS  Google Scholar 

  • Hidalgo, M. C., Cruz-Sanjulian, J., & Sanroma, A. (1995). Evolucion geoquimica de las aguas subterraneas en una cuenca sedimentaria semiarida (acuifero de Baza-Caniles, Granada, Espana). Tierra y Tecnologia, 20, 39–48.

    Google Scholar 

  • Jacks, G. (1973). Chemistry of groundwater in a district in Southern India. Journal of Hydrology, 18, 185–200.

    Article  CAS  Google Scholar 

  • Jalali, M. (2005). Nitrates leaching from agricultural land in Hamadan, western Iran. Agriculture, Ecosystems & Environment, 110, 210–218.

    Article  CAS  Google Scholar 

  • Jalali, M. (2006). Chemical characteristics of groundwater in parts of mountainous region, Alvand, Hamadan, Iran. Environmental Geology, 51, 433–446.

    Article  CAS  Google Scholar 

  • Jalali, M. (2009). Geochemistry characterisation of groundwater in an agricultural area of Razan, Hamadan, Iran. Environmental Geology, 56, 1479–1488.

    Article  CAS  Google Scholar 

  • Johnson, C. C. (1979). Land application of water—an accident waiting to happen. Groundwater, 17(1), 69–72.

    Article  Google Scholar 

  • Klimas, A. A. (1996). Methodology for mapping shallow groundwater quality in urbanized areas: A case study from Lithuania. Environmental Geology, 27, 320–328.

    Article  CAS  Google Scholar 

  • Loizidou, M., & Kapetanios, E. G. (1993). Effect of leachate from landfills on underground water quality. The Science of the Total Environment, 128, 69–81.

    Article  CAS  Google Scholar 

  • Magaritz, M., Nadler, A., Koyumdjisky, H., & Dan, N. (1981). The use of Na/Cl ratio to trace solute sources in a semiarid zone. Water Resources Research, 17, 602–608.

    Article  CAS  Google Scholar 

  • Meybeck, M. (1987). Global chemical weathering of surficial rocks estimated from river dissolved loads. American Journal of Science, 287, 401–428.

    Article  CAS  Google Scholar 

  • Mondal, N. C., Saxena, V. K., & Singh, V. S. (2005). Impact of pollution in tanneries on groundwater regime. Current Science, 88(12), 1988–1994.

    CAS  Google Scholar 

  • Naik, P. K., Tambe, J., Duhury, B. N., & Tiwari, A. N. (2008). Impact of urbanisation on the groundwater regime in a fast growing city in Central India. Environmental Monitoring and Assesment, 146, 339–373.

    Article  CAS  Google Scholar 

  • Nagaraju, A., Surresh, S., Killam, K., & Hudson-Edwards, K. (2006). Hydrogeochemistry of waters of Mangampeta Barite Mining Area, Cuddapach Basin, Andhra Pradesh, India. Turkish Journal of Engineering and Environmental Sciences, 30, 203–219.

    CAS  Google Scholar 

  • Narayana, A., & Suresh, G. (1989). Chemical quality of groundwater of Mangalore City, Karnataka. Indian Journal of Environmental Health, 31(3), 228–236.

    CAS  Google Scholar 

  • Pacheco, J. A., & Cabrera, A. S. (1997). Groundwater contamination by nitrates in the Yucatan Peninsula, Mexico. Hydrogeology Journal, 5(2), 47–53.

    Article  Google Scholar 

  • Pandit, M. K., Bhardwaj, V., & Pareek, N. (2009). Urbanization impact on hydrogeological regime in Jaipur Urban Block: A rapidly growing urban center in NW India. The Environmentalist, 29(4), 341–347.

    Article  Google Scholar 

  • Piper, A. M. (1953). A graphical procedure in the geochemical interpretation of water analysis. Transactions of the American Geophysical Union, 25, 914–928.

    Google Scholar 

  • Piskin, R. (1973). Evaluation of nitrate content of groundwater in Hall County, Nebraska. Ground Water, 11(6), 4–13.

    Article  Google Scholar 

  • Pitt, R., Clark, S., & Field, R. (1999). Groundwater contamination potential from storm water infiltration practices. Urban Water, 1, 217–236.

    Article  CAS  Google Scholar 

  • Ramesh, R., Shiv Kumar, K., Eswaramoorthy, S., & Purvaja, G. R. (1995). Migration and contamination of major and trace elements in groundwater of Madras City, India. Environmental Geology, 25, 126–136.

    Article  CAS  Google Scholar 

  • Ritter, W. F., & Chirnside, A. E. M. (1984). Impact of land use on ground water quality in Southern Delaware. Ground Water, 22(1), 38–47.

    Article  CAS  Google Scholar 

  • Rogers, R. J. (1989). Geochemical comparison of groundwater in areas of New England, New York and Pennsylvania. Ground Water, 27, 690–712.

    Article  CAS  Google Scholar 

  • Sami, K. (1992). Recharge mechanisms and geochemical processes in a semi-arid sedimentary basin, Eastern Cape, South Africa. Journal of Hydrology, 139, 27–48.

    Article  CAS  Google Scholar 

  • Sanchez-Perez, J. M., & Tremolieres, M. (2003). Change in groundwater chemistry as a consequence of suppression of floods: The case of the Rhine floodplain. Journal of Hydrology, 270, 89–104.

    Article  CAS  Google Scholar 

  • Schoeller, H. (1965). Qualitative Evaluation of Groundwater Resources. In Methods and Techniques of Groundwater Investigations and Developments. UNESCO.

  • Si, J., Feng, Q., Wen, X., Su, Y., Xi, H., & Chang, Z. (2009). Major ion chemistry of groundwater in the extreme arid region northwest China. Environmental Geology, 57, 1079–1087.

    Article  CAS  Google Scholar 

  • Sreedevi, P. D. (2004). Groundwater quality of Pageru River basin, Cuddapah District, Andhra Pradesh. Journal of the Geological Society of India, 64, 619–636.

    CAS  Google Scholar 

  • Stallard, R. F., & Edmond, J. M. (1983). Geochemistry of the Amazon River—the influence of the geology and weathering environment on the dissolved load. Journal of Geophysical Research, 88, 9671–9688.

    Article  CAS  Google Scholar 

  • Stimson, J., Frape, S., Drimmie, R., & Rudolph, D. (2001). Isotopic and geochemical evidence of regional-scale anisotropy and interconnectivity of an alluvial fan system, Cochabamba Valey, Bolivia. Applied Geochemistry, 16, 1097–1114.

    Article  CAS  Google Scholar 

  • Subbarao, C., Subbarao, N. V., & Chandu, S. N. (1996). Characterization of groundwater contamination using factor analysis. Environmental Geology, 28(4), 175–180.

    Article  CAS  Google Scholar 

  • Subba Rao, N. (2002). Geochemistry of groundwater in parts of Guntur district, Andhra Pradesh, India. Environmental Geology, 41, 552–562.

    Article  Google Scholar 

  • Subba Rao, N. (2006). Seasonal variation of groundwater quality in a part of Guntur district, Andhra Pradesh, India. Environmental Geology, 49, 413–429.

    Article  Google Scholar 

  • Subba Rao, N., & Surya Rao, P. (2009). Major ion chemistry of groundwater in a river basin: A study from India. Environmental Earth Sciences, 61(4), 757–775.

    Article  Google Scholar 

  • Subrahmanyam, K., & Yadaiah, P. (2000). Assessment of the impact of industrial effluents on water quality in Patancheru and environs, Medak district, Andhra Pradesh, India. Hydrogeology Journal, 9(3), 297–312.

    Google Scholar 

  • US Salinity Laboratory Staff (1954). Diagnosis and improvements of saline and alkali soils (p. 160). US Department of Agriculture Handbook No. 60, USDA.

  • Walton, W. C. (1970). Groundwater resources evaluation. New York: McGraw-Hill.

    Google Scholar 

  • Wen, X. H., Wu, Y. Q., & Wu, J. (2008). Hydrochemical characteristics of groundwater in the Zhangye Basin, Northwestern China. Environmental Geology, 55, 1713–1724.

    Article  CAS  Google Scholar 

  • Whittemore, D. O., Greggor, K. M. M., & Marotz, G. A. (1989). Effects of variations in recharge on groundwater quality. Journal of Hydrology, 06, 1–145.

    Google Scholar 

  • WHO (1997). Guideline for drinking water quality, health criteria and other supporting information, World Health Organisation (2nd ed., Vol. 1). Geneva: WHO.

    Google Scholar 

  • Williams, D. D., Williams, N. E., & Cao, Y. (1999). Road salt contamination of groundwater in a major metropolitan area and development of a biological index to monitor its impacts. Water Research, 34, 127–138.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepali Marghade.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marghade, D., Malpe, D.B. & Zade, A.B. Major ion chemistry of shallow groundwater of a fast growing city of Central India. Environ Monit Assess 184, 2405–2418 (2012). https://doi.org/10.1007/s10661-011-2126-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-011-2126-3

Keywords

Navigation