Skip to main content
Log in

Comparison of dissolved organic matter fractions in a secondary effluent and a natural water

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

This research compared the structural and chemical characteristics among dissolved organic matter (DOM) fractions within the same source and among different origins. Samples taken from the Taiping Wastewater Treatment Plant (TWTP) (Harbin, China) and from the Songhuajing River (SR), Heilongjiang Province, China were chosen to represent waters containing DOM of wastewater origin and of natural-water origin, respectively. DOM was fractionated using XAD resins into five fractions: hydrophobic acid (HPO-A), hydrophobic neutral (HPO-N), transphilic acid (TPI-A), transphilic neutral (TPI-N) and hydrophilic fraction (HPI). The SR fractions were more UV-sensitive and more reactive with chlorine in formation of trihalomethanes (THMs) than the TWTP secondary effluent (TSE) fractions. The aromatic character peaks in the Fourier-transform infrared (FT-IR) spectra of SR fractions were clearer than those of TSE fractions. On the other hand, the peaks of carbohydrates in TSE fractions were more prominent in comparison with SR fractions. In addition, the amide-2 peak was present in the spectra of all the five TSE fractions but not visible in the spectra of SR fractions. The fluorescence results showed that SR DOM fractions contained more fulvic acid-like fluorescent compounds while TSE DOM fractions had higher amounts of protein-like fluorescent components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aiken, G. L., McKnight, D. M., Thorn, K. A., & Thurman, E. M. (1992). Isolation of hydrophilic organic acids from water using nonionic macroporous resins. Organic Geochemistry, 18(4), 567–573.

    Article  CAS  Google Scholar 

  • Barber, L. B., Leenheer, J. A., Noyes, T. I., & Stiles, E. A. (2001). Nature and transformation of dissolved organic matter in treatment wetlands. Environmental Science and Technology, 35(24), 4805–4816.

    Article  CAS  Google Scholar 

  • Chen, J., Gu, B., LeBoeuf, E. J., Pan, H., & Dai, S. (2002). Spectroscopic characterization of the structural and functional properties of natural organic matter fractions. Chemosphere, 48(1), 59–68.

    Article  CAS  Google Scholar 

  • Chen, W., Westerhoff, P., Leenheer, J. A., & Booksh, K. (2003). Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter. Environmental Science and Technology, 37(24), 5701–5710.

    Article  CAS  Google Scholar 

  • Chow, A. T., Guo, F., Gao, S., & Breuer, R. S. (2006). Size and XAD fractionations of trihalomethane precursors from soils. Chemosphere, 62(10), 1636–1646.

    Article  CAS  Google Scholar 

  • Davis, W. M., Erickson, C. L., Johnston, C. T., Delfino, J. J., & Porter, J. E. (1999). Quantitative fourier transform infrared spectroscopic investigation of humic substance functional group composition. Chemosphere, 38(12), 2913–2928.

    Article  CAS  Google Scholar 

  • Drewes, J. E., Quanrud, D. M., Amy, G. L., & Westerhoff, P. K. (2006). Character of organic matter in soil-aquifer treatment systems. Journal of Environmental Engineering, ASCE, 132(11), 1447–1458.

    Article  CAS  Google Scholar 

  • Fabbricino, M., & Korshin, G. V. (2004). Probing the mechanisms of NOM chlorination using fluorescence: Formation of disinfection by-products in Alento River water. Water Science and Technology: Water Supply, 4(4), 227–233.

    CAS  Google Scholar 

  • Her, N., Amy, G., McKnight, D., Sohn, J., & Yoon, Y. (2003). Characterization of DOM as a function of MW by fluorescence EEM and HPLC-SEC usingUVA, DOC, and fluorescence detection. Water Research, 37(17), 4295–4303.

    Article  CAS  Google Scholar 

  • Hur, J., Jung, N. C., & Shin, J. K. (2007). Spectroscopic distribution of dissolved organic matter in a dam reservoir impacted by turbid storm runoff. Environmental Monitoring and Assessment, 133(1–3), 53–67.

    Article  CAS  Google Scholar 

  • Kanokkantapong, V., Marhaba, T. F., Panyapinyophol, B., & Pavasant, P. (2006). FTIR evaluation of functional groups involved in the formation of haloacetic acids during the chlorination of raw water. Journal of Hazardous Materials, 136(2), 188–196.

    Article  CAS  Google Scholar 

  • Kim, H. C., & Yu, M. J. (2005). Characterization of natural organic matter in conventional water treatment processes for selection of treatment process focused on DBPs control. Water Research, 39(19), 4779–4789.

    Article  CAS  Google Scholar 

  • Kim, H. C., Yu, M. J., & Han, I. (2006). Multi-method study of the characteristic chemical nature of aquatic humic substances isolated from the Han River, Korea. Applied Geochemistry, 21(7), 1226–1239.

    Article  CAS  Google Scholar 

  • Li, L., Zhao, Z., Huang, W., Peng, P., Sheng, G., & Fu, J. (2004). Characterization of humic acids fractionated by ultrafiltration. Organic Geochemistry, 35(9), 1025–1037.

    Article  CAS  Google Scholar 

  • Lin, C. F., Liu, S. H., & Hao, O. J. (2001). Effect of functional groups of humic substances on UF performance. Water Research, 35(10), 2395–2402.

    Article  CAS  Google Scholar 

  • Ma, H., Allen, H. E., & Yin, Y. (2001). Characterization of isolated fractions of dissolved organic matter from natural waters and a wastewater effluent. Water Research, 35(4), 985–996.

    Article  CAS  Google Scholar 

  • Maie, N., Scully, N. M., Pisani, O., & Jaffe, R. (2007). Composition of a protein-like fluorophore of dissolved organic matter in coastal wetland and estuarine ecosystems. Water Research, 41(3), 563–570.

    Article  CAS  Google Scholar 

  • Maurice, P. A., Pullin, M. J., Cabaniss, S. E., Zhou, Q., Namjesnik-Dejanovic, K., & Aiken, G. R. (2002). A comparison of surface water natural organic matter in raw filtered water samples, XAD, and reverse osmosis isolates. Water Research, 36(9), 2357–2371.

    Article  CAS  Google Scholar 

  • McKnight, D. M., Boyer, E. W., Westerhoff, P. K., Doran, P. T., Kulbe, T., & Anderson, D. T. (2001). Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic materials and aromaticity. Limnology and Oceanography, 46(1), 38–48.

    Article  CAS  Google Scholar 

  • Miano, T. M., & Senesi, N (1992). Synchronous excitation fluorescence spectroscopy applied to soil humic substances chemistry. Science of The Total Environment, 117–118(1), 41–51.

    Article  Google Scholar 

  • Panyapinyopol, B., Marhaba, T. F., Kanokkantapong, V., & Pavasant, P. (2005). Characterization of precursors to trihalomethanes formation in Bangkok source water. Journal of Hazardous Materials, 120(1–3), 229–236.

    Article  CAS  Google Scholar 

  • Persson, T., & Wedborg, M (2001). Multivariate evaluation of the fluorescence of aquatic organic matter. Analytica Chimica Acta, 434(2), 179–192.

    Article  CAS  Google Scholar 

  • Peuravuori, J., Koivikko, R., & Pihlaja, K. (2002). Characterization, differentiation and classification of aquatic humic matter separated with different sorbents: Synchronous scanning fluorescence spectroscopy. Water Research, 36(18), 4552–4562.

    Article  CAS  Google Scholar 

  • Senesi, N., Miano, T. M., Provenzano, M. R., & Brunetti, G. (1991). Characterization, differentiation, and classification of humic substances by fluorescence spectroscopy. Soil Science, 152(4), 259–271.

    Article  CAS  Google Scholar 

  • Sirivedhin, T., & Gray, K. A. (2005). Comparison of the disinfection by-product formation potentials between a wastewater effluent and surface waters. Water Research, 39(6), 1025–1036.

    Article  CAS  Google Scholar 

  • Westerhoff, P., Chen, W., & Esparza, M. (2001). Fluorescence analysis of a standard fulvic acid and tertiary treated wastewater. Journal of Environmental Quality, 30(6), 2037–2046.

    Article  CAS  Google Scholar 

  • Xue, S., Zhao, Q. L., Wei, L. L., & Jia, T. (2008). Effect of bromide ion on isolated fractions of dissolved organic matter in secondary effluent during chlorination. Journal of Hazardous Materials, 157(1), 25–33.

    Article  CAS  Google Scholar 

  • Xue, S., Zhao, Q. L., Wei, L. L., & Ren, N. Q. (2009). Behavior and character of dissolved organic matter during column studies of soil aquifer treatment. Water Research, 43(2), 499–507.

    Article  CAS  Google Scholar 

  • Yoon, J., Choi, Y., Cho, S., & Lee, D. (2001). Low trihalomethane formation in Korean drinking water. Science of The Total Environment, 302(1–3), 157–166.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuang Xue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xue, S., Zhao, Q., Ma, X. et al. Comparison of dissolved organic matter fractions in a secondary effluent and a natural water. Environ Monit Assess 180, 371–383 (2011). https://doi.org/10.1007/s10661-010-1793-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-010-1793-9

Keywords

Navigation