Skip to main content

Advertisement

Log in

Analysis and evaluation of the source of heavy metals in water of the River Changjiang

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In order to analyze and evaluate different trace metals on surface water of the Changjiang River, concentrations of dissolved trace metals (Cu, Ni, Fe, Co, Sc, Al, Zn, Pb, Cd, Se, As, Cr, and Hg), major elements(Ca and Mg), and nutrient(NO\(_{3}^{-})\) were measured. Samples were taken at 76 positions along Changjiang River in flood and dry seasons during 2007–2008. Spatial distributions identified two main large zones mainly influenced by mineral erosion (sites 1–22) and anthropogenic action (sites 23–76), respectively. Principal component analysis (PCA) and hierarchical cluster analysis were used to identify the variance distinguishing the origin of water. Four significant components were extracted by PCA, explaining 74.91% of total variable. Cu, Ni, Fe, Co, Sc, Al, Ca, and Mg were mainly associated with the weathering and erosion of various rocks and minerals, while an anthropogenic source was identified for Cd and As. Although erosion was one source of Pb and Zn, they were also input by atmospheric deposition and industrial pollutions. NO\(_{3}^{-}\) and Se were mainly associated with agriculture activities. However, Hg and Cr showed different sources. CA confirmed and completed the results obtained by PCA, classifying the data into two large groups representing different areas. Group 1 referred to the upper reaches which represented samples mainly corresponding to natural background areas. Group 2 referred to the middle and lower reaches including samples under anthropogenic influence. Meanwhile, group 2 was subdivided into three new groups, representing agricultural, industrial, and various artificial pollution sources, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alberto, W. D., Pilar, D. M. D., Valeria, A. M., Fabiana, P. S., Cecilia, H. A. & Ángeles, B. M. D. L (2001). Patern recognition techniques for the evaluation of spatial and temporal variations in water quality. A case study: Suquia River basin (Cordoba-Artgentina). Water Research, 35, 2881–2894.

    Article  CAS  Google Scholar 

  • Bengraine, K., & Marhaba, T. F. (2003). Using principal component analysis to monitor spatial and temporal changes in water quality. Journal of Hazardous Materials B, 100, 179–195.

    Article  CAS  Google Scholar 

  • Cenci, R. M., & Martin, J. M. (2004). Concentration and fate of trace metals in Mekong River Delta. Science of the Total Environment, 332, 167–182.

    Article  CAS  Google Scholar 

  • Chen, J. S., Wang, F. Y., Xia, X. H., & Zhang, L. T. (2002). Major element chemistry of the Changjiang (Yangtze River). Chemical Geology, 187, 231–255.

    Article  CAS  Google Scholar 

  • Chen, K. P., Jiao, J. J., Huang, J. M., & Huang, R. Q. (2007). Multivariate statistical evaluation of trance elements in groundwater in a coastal area in Shenzhen, China. Environmental Pollution, 147, 771–780.

    Article  CAS  Google Scholar 

  • Chen, X. Q., Yan, Y. X., Fu, R. S., Dou, X. P., & Zhang, E. F. (2008). Sediment transport from the Yangtze River, China, into the sea over the post-three Gorge Dam period: A discussion. Quaternary International, 186, 55–64.

    Article  Google Scholar 

  • Chetelat, B., Liu, C. Q., Zhao, Z. Q., Wang, Q. L., Li, S. L., Li, J., et al. (2008). Geochemistry of the dissolved load of the Changjiang Basin Rivers: Anthropogenic impacts and chemical weathering. Geochimica et Cosmochimica Acta, 72, 4254–4277.

    Article  CAS  Google Scholar 

  • Fralick, P. W., & Kronberg, B. I. (1997). Geochemical discrimination of clastic sedimentary rock sources. Sedimentary Geology, 113, 111–124.

    Article  CAS  Google Scholar 

  • Garcia-Luque, E., Forja, J. M., DelValls, T. A., & Gomez-Parra, A. (2003). The behaviour of heavy metals from the Guadalquivir estuary after the Aznalcóllar mining spill: Field and laboratory surveys. Environmental Monitoring and Assessment, 83, 71–88.

    Article  CAS  Google Scholar 

  • Gocht, T., Moldenhauera, K. M., & Püttmann, W. (2001). Historical record of polycyclic aromatic hydrocarbons(PAH) and heavy metals in floodplain sediments from the Rhine River (Hessisches Ried, Germany). Applied Geochemistry, 16, 1707–1721.

    Article  CAS  Google Scholar 

  • Hakanson, L., & Jansson, M. (1983). Principles of lake sedimentology. Berlin: Springer.

    Google Scholar 

  • Hu, M. H., Stallard, R. F., & Edmond, J. M. (1982). Major ion chemistry of some large Chinese rivers. Nature, 298, 550–553.

    Article  Google Scholar 

  • Jain, C. K. (2002). A hydro-chemical study of a mountainous watershed: The Ganga. India. Water Research, 36, 1262–1274.

    Article  CAS  Google Scholar 

  • Jain, C. K., Singhal, D. C., Sharma, M. K. (2005). Metal pollution assessment and water in the river Hindon. India. Environmental Monitoring and Assessment, 105, 193–207.

    Article  CAS  Google Scholar 

  • Kazi, T. G., Arain, M. B., Jamali, M. K., Jalbani, N., Afridi, H. I., Sarfraz, R. A., et al. (2009). Assessment of water quality of polluted lake using multivariate statistical techniques: A case study. Ecotoxicology and Environmental Safety, 72, 301–309.

    Article  CAS  Google Scholar 

  • Kidd, P. S., Dominguez-Rodriguez, M. J., Diez, J., & Monterroso, C. (2007). Bioavailability and plant accumulation of heavy metals and phosphorus in agricultural soils amended by long-term application of sewage sludge. Chemosphere, 66, 1458–1467.

    Article  CAS  Google Scholar 

  • Klavinš, M., Briede, A., Rodinov, V., Kokorite, I., Parele, E., & Klavina, I. (2000). Heavy metals in rivers of Latvia. Science of the Total Environment, 262, 175–183.

    Article  Google Scholar 

  • Krishna, A. K., Satyanarayanan, M., & Govil, P. K. (2009). Assessment of heavy metal pollution in water using multivariate statistical techniques in an industrial area: A case study from Patancheru, Medak District, Andhra Pradesh, India. Journal of Hazardous Materials, 167, 366–373.

    Article  CAS  Google Scholar 

  • Kucuksezgin, F., Uluturhan, E., & Batki, H. (2008). Distribution of heavy metals in water, particulate matter and sediments of Gediz River (Eastern Aegean). Environmental Monitoring and Assessment, 141, 213–225.

    Article  CAS  Google Scholar 

  • Laaksoharju, M., Skarman, C., & Skarman, E. (1999). Multivariate mixing and mass balance (M3) calculation, a new tool for decoding hydrogeochemical information. Applied Geochemistry, 114, 861–871.

    Article  Google Scholar 

  • Levinson, A. A. (1974). Introduction to exploration geochemistry. Calgary: Applied Publishing Ltd.

    Google Scholar 

  • Lithner, G. (1989). Some fundamental relationships between metal toxicity in freshwater, physicochemical properties and background levels. Science of the Total Environment, 87/88, 365–380.

    Article  Google Scholar 

  • Li, S. Y., & Zhang, Q. F. (2010). Spatial characterization of dissolved trace elements and heavy metals in the upper Han River (China) using multivariate statistical techniques. Journal of Hazardous Materials, 1–3, 579–588.

    Article  Google Scholar 

  • Lu, X. Q., Wang, L., Liu, H. D., Wang, R., & Chen, J. (2007). Studies on the interaction between antibiotics and DNA. Talanta, 73, 444–450.

    Article  CAS  Google Scholar 

  • Markich, S. J., & Brown, P. L. (1998). Relative importance of natural and anthropogenic influences on the fresh surface water chemistry of the Hawkesbury-Nepean River, south-eastern Australia. Science of the Total Environment, 217, 201–230.

    Article  CAS  Google Scholar 

  • Mendiguchia, C., Moreno, C., & Galindo-Riano, M. D. (2004). Using chemometric tools to assess anthropogenic effects in river water: A case study: Guadalquivir River (Spain). Analytica Chimica Acta, 515, 143–149.

    Article  CAS  Google Scholar 

  • Mendiguchia, C., Moreno, C., Garcia-Vargas, M. (2007). Evaluation of natural and anthropogenic influences on the Guadalquivir River (Spain) by dissolved heavy metals and nutrients. Chemosphere, 69, 1509–1517.

    Article  CAS  Google Scholar 

  • Michel, P., Boutier, B., & Chiffoleau, C. J. F. (2000). Net fluxes of dissolved arsenic, cadmium, copper, zinc, nitrogen and phosphorous from the Gironde Estuary(France): Seasonal variations and trends. Estuarine, Coast and Shelf Science, 51, 451–462.

    Article  CAS  Google Scholar 

  • Mico, C., Recatala, L., Peris, M., & Sanchez, J. (2006). Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis. Chemosphere, 65, 863–872.

    Article  CAS  Google Scholar 

  • Milliman, J. D., & Syvitski, J. P. M. (1992). Geomorphic/tectonic control of sediment discharge to the ocean: The importance of small mountainous rivers. Journal of Geology, 100, 525–544.

    Article  Google Scholar 

  • Müller, B., Berg, M., Yao, Z. P., Zhang, X. F., Wang, D., & Pfluger, A. (2008). How polluted is the Yangtze river? Water quality downstream from the Three Gorges Dam. Science of the Total Environment, 402, 232–247.

    Article  Google Scholar 

  • Qiao, S. Q., Yang, Z. S., Pan, Y. J., & Guo, Z. G. (2007). Metals in suspended sediments from the Changjiang (Yangtze River) and Huanghe (Yellow River) to the sea, and their comparison. Estuarine, Coastal and Shelf Science, 74, 539–548.

    Article  CAS  Google Scholar 

  • Reghunath, R., Sreedhara Murthy, T. R., Raghavan, B. R. (2002). The utility of multivariate statistical techniques in hydrogeochemical studies: An example from Karnataka, India. Water Research, 36, 2437–2442.

    Article  CAS  Google Scholar 

  • Rojas, J. C., Vandecasteele, C. (2007). Influence of mining activities in the North of Potosi, Bolivia on the water quality of the Chayanta river, and its consequences. Environmental Monitoring and Assessment, 132, 321–330.

    Article  CAS  Google Scholar 

  • Rubio, B., Nombela, M. A., Vilas, F. (2000). Geochemistry of major and trance elements in sediments of the Ria de Vigo(NW Spain): An assessment of metal pollution. Marine Pollution Bulletin, 40, 968–980.

    Article  CAS  Google Scholar 

  • Sakai, H., Kojima, Y., & Saito, K. (1986). Distribution of heavy metals in water and sieved sediments in the Toyohira River. Water Research, 20, 559–567.

    Article  CAS  Google Scholar 

  • Shan, L. L., Yuan, X. Y., Mao, C. P., Ji, J. F. (2008). Characteristics of heavy metals in sediments from different sources and their ecological risks in the lower reaches of the Yangtze River. Environmental Science (in Chinese), 29, 2399–2404.

    Google Scholar 

  • Shine, J. P., Ika, R. V., & Ford, T. E. (1995). Multivariate statistical examination of spatial and temporal patterns of heavy metal contamination in New Bedford Harbor marine sediments. Environmental Science Technology, 29, 1781–1788.

    Article  CAS  Google Scholar 

  • Shrestha, S., & Kazama, F. (2007). Assessment of surface water quality using multivariate statistical techniques: A case study of the Fuji River basin, Japan. Environmental Modeling & Software, 22, 464–475.

    Article  Google Scholar 

  • Simeonov, V., Simeonova, P., & Tsitouridou, R. (2004). Chemometric quality assessment of surface waters: Two case studies. Chemical and Engineering Ecology, 1, 449–469.

    Google Scholar 

  • Singh, K. P., Malik, A., Mohan, D., Sinha, S. (2004). Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India)—A case study. Water Research, 38, 3980–3992.

    Article  CAS  Google Scholar 

  • Taylor, S. R., & McLennan, S. M. (1985). The continental crust: Its composition and evolution. Oxford: Blackwell.

    Google Scholar 

  • Xia, X. Q., Mao, Y. Q., Ji, J. F., Ma, H. R., Chen, J., & Liao, Q. L. (2007). Reflectance spectroscopy study of Cd contamination in the sediments of the Changjiang River, China. Environmental Science Technology, 41, 3449–3454.

    Article  CAS  Google Scholar 

  • U.S. Environmental Protection Agency (2006). Edition of the drinking water standards and health advisories.

  • Xing, G. X., & Zhu, Z. L. (2002). Regional nitrogen budgets for China and its major watersheds. Biogeochemistry, 57/58, 405–427.

    Article  Google Scholar 

  • Yang, S. Y., Li, C. X., Jung, H. S., Lee, H. J. (2002). Discrimination of geochemical compositions between the Changjiang and the Huanghe sediments and its application for the identification of sediment source in the Jiangsu coastal plain, China. Marine Geology, 186, 229–241.

    Article  CAS  Google Scholar 

  • Zhang, J. (1999). Heavy metal compositions of suspended sediments in the Changjiang (Yangtze River) estuary: Significance of riverine transport to the ocean. Continental Shelf Research, 19, 1521–1543.

    Article  Google Scholar 

  • Zhang, J., Huang, W. W., Liu, M. G., Zhou, Q. (1990). Drainage basin weathering and major element transport of two large Chinese river(Huanghe and Changjiang). Journal of Geophysical Research, 95, 13277–13288.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaping Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Wang, Y., Xu, C. et al. Analysis and evaluation of the source of heavy metals in water of the River Changjiang. Environ Monit Assess 173, 301–313 (2011). https://doi.org/10.1007/s10661-010-1388-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-010-1388-5

Keywords

Navigation