Skip to main content
Log in

Effect of humic deposit (leonardite) on degradation of semi-volatile and heavy hydrocarbons and soil quality in crude-oil-contaminated soil

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In order to investigate the bioremedial potential of humic deposit (leonardite), the effects of the treatments of leonardite and a commercial bioaugmentation agent on the degradation of a variety of petroleum hydrocarbons (C13–C31) and soil enzyme activities (urease acid-alkaline phosphatase and dehydrogenase) were tested within a soil incubation experiment lasting 120 days. Experimentally crude-oil-contaminated soil (2.5%) was regulated to a C:N:P ratio (100:15:1; Oilcon), amended with 5% of leonardite and regulated to the same C:N:P ratio (Oilcon-L) or mixed with a commercial bioaugmentation product (Oilcon-B), respectively. In the short period of incubation (60 days), Oilcon and Oilcon-B treatments showed higher hydrocarbon degradations, whereas Oilcon-L showed higher hydrocarbon degradation over Oilcon and Oilcon-B treatments in the long-term (120 days). Applying contaminated soil with leonardite increased urease (LSD, 4.978, *P < 0.05) and dehydrogenase (LSD, 0.660, *P < 0.05) activities. However, acid and alkaline phosphatase activities showed no certain inclination between different treatments. Dehydrogenase seemed to be more related to hydrocarbon degradation process. Overall results showed that leonardite enhanced biodegradation of petroleum hydrocarbons and also stimulated soil ecological quality measured as soil enzyme activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albiach, R., Canet, R., Pomares, F., & Ingelmo, F. (2000). Microbial biomass content and enzymatic activities after the application of organic amendments to a horticultural soil. Bioresource Technology, 75, 43–48.

    Article  CAS  Google Scholar 

  • Al-Hadhrami, M. N., Lappin-Scott, H. M., & Fisher, P. J. (1996). Effects of the addition of organic carbon sources on bacterial respiration and n-alkane biodegradation of Omani crude oil. Marine Pollution Bulletin, 31, 1–7.

    Google Scholar 

  • Al-Hadhrami, M. N., Lappin-Scott, H. M., & Fisher, P. J. (1997). Studies on the biodegradation of three groups of pure n-alkanes in the presence of molasses and mineral fertilizer by Pseudomonas aeruginosa. Marine Pollution Bulletin, 34, 969–974.

    Article  CAS  Google Scholar 

  • Atlas, R. M. (1991). Microbial hydrocarbon degradation–bioremediation of oil spills. Journal of Chemistry Technology and Biotechnology, 52, 149–156.

    Article  CAS  Google Scholar 

  • Ayotamuno, M. J., Kogbara, R. B., Ogaji, S. O. T., & Probert, S. D. (2006). Bioremediation of a crude-oil polluted agricultural-soil at Port Harcourt, Nigeria. Applied Energy, 83, 1249–1257.

    Article  CAS  Google Scholar 

  • Baedecker, M. J. (1991). Partitioning and transport of hydrocarbons from crude oil in a sand and gravel aquifer. In Proceedings of the American Chemical Society (ACS) National Meeting, April 14 19, Atlanta, GA (pp. 23–24). American Chemical Society, Washington DC.

  • Baran, S., Bielinska, J. E., & Oleszczuk, P. (2004). Enzymatic activity in an airfield soil polluted with polycyclic aromatic hydrocarbons. Geoderma, 118, 221–232.

    Article  CAS  Google Scholar 

  • Barathi, S., & Vasudevan, N. (2001). Utilization of petroleum hydrocarbons by Pseudomonas fluorescens isolated from a petroleum contaminated soil. Environment International, 26, 413–416.

    Article  CAS  Google Scholar 

  • Benitez, E., Melgar, R., Sainz, H., Gomez, M., & Nogales, R. (2000). Enzymes activities in rhizosphere of pepper (Capsicum annuun, L) grown with olive cake mulches. Soil Biology & Biochemistry, 32, 1829–1835.

    Article  CAS  Google Scholar 

  • Bento, F. M., Camargo, F. A. O., Okeke, B. C., & Frankenberger, W. T. (2005). Comparative bioremediation of soils contaminated with diesel oil by natural attenuation, biostimulation and bioaugmentation. Bioresource Technology, 96, 1049–1055.

    Article  CAS  Google Scholar 

  • Betts, W. B. (1993). Bioremediation; an alternative treatment for oil pollution. Genetic Engineer and Biotechnology, 13, 49–59.

    Google Scholar 

  • Beyer, L., Sieling, K., & Pingpank, K. (1999). The impact of a low humus level in arable soils on microbial properties, soil organic matter quality and crop yield. Biology and Fertility of Soils, 28, 156–161.

    Article  CAS  Google Scholar 

  • Boopathy, R. (2000). Factors limiting bioremediation technologies. Bioresource Technology, 74, 63–67.

    Article  CAS  Google Scholar 

  • Bossert, I., & Bartha, R. (1984). The fate of petroleum in soil ecosystem. In R. M. Atlas (Ed.), Petroleum microbiology (pp. 435–476). New York: Macmillan Oilcon.

    Google Scholar 

  • Bouyoucos, G. J. (1951). A calibration of the hydrometer for making mechanical analysis of soils. Agronomy Journal, 43, 9.

    Article  Google Scholar 

  • Bremner, S. M. (1982). Total nitrogen. In A. L. Page, R. H. Miller, & D. R. Keeney (Eds.), Methods of soil analysis. Part 2 (pp. 595–624). Madison: ASA-SSSA.

    Google Scholar 

  • Brookes, P. C. (1995). The use of microbial parameters in monitoring soil pollution by heavy metals. Biology and Fertility of Soils, 19, 269–279.

    Article  CAS  Google Scholar 

  • Calderon, J. F., Jackson, L. E., Scow, K. M., & Rolston, D. E. (2000). Microbial responses to simulated tillage in cultivated and uncultivated soils. Soil Biology & Biochemistry, 32, 1547–1559.

    Article  CAS  Google Scholar 

  • Caravaca, F., & Roldan, A. (2003). Assessing changes in physical and biological properties in a soil contaminated by oil sludges under semiarid Mediterranean conditions. Geoderma, 117, 53–61.

    Article  CAS  Google Scholar 

  • Chen, S. K., Subler, S., & Edwards, C. A. (2002). Effects of agricultural biostimulants on soil microbial activity and nitrogen dynamics. Appl. Soil Ecol., 19, 249–259.

    Article  Google Scholar 

  • Clapp, C. E., Hayes, M. H. B., Simpson, A. J., & Kingery, W. L. (2005). Chemistry of soil organic matter. In A. Tabatabai & D. L. Sparks (Eds.), Chemical processes in soils (pp. 1–150). Madison: Soil Science Society of America.

    Google Scholar 

  • Dawson, J. J. C., Godsiffe, E. J., Thompson, I. P., Ralebitso-Senior, T. K., Killham, K. S., & Paton, G. I. (2007). Application of biological indicators to assess recovery of hydrocarbon impacted soils. Soil Biology & Biochemistry, 39, 164–177.

    Article  CAS  Google Scholar 

  • Dick, R. P. (1997). Soil enzyme activities as integrative indicators of soil health. In C. E. Pankhurst, B. M. Doube, & V. V. S. R. Gupta (Eds.), Biological indicators of soil health (pp. 121–156). Wallingford: CAB International.

    Google Scholar 

  • Dick, W. A., & Tabatabai, M. A. (1993). Significance and potential uses of soil enzymes. In F. B. Metting (Ed.), Soil microbial ecology. Application in agricultural and environmental management (pp. 95–125). New York: Marcel Dekker.

    Google Scholar 

  • Drijber, R. A., Doran, J. W., Parkhurst, A. M., & Lyon, D. J. (2000). Changes in soil microbial community structure with tillage under long-term wheat-fallow management. Soil Biology & Biochemistry, 32, 1419–1430.

    Article  CAS  Google Scholar 

  • Elektorowicz, M. (1994). Bioremediation of petroleum-contaminated clayey soil with pretreatment. Environmental Technology, 15, 373–380.

    Article  CAS  Google Scholar 

  • Fava, F., & Piccolo, A. (2002). Effects of humic substances on the bioavailability of polychlorinated biphenyls in a model soil. Biotechnology and Bioengineering, 77, 204–211.

    Article  CAS  Google Scholar 

  • Frankenberger, W. T., & Johanson, J. B. (1982). Influence of crude oil and refined petroleum products on soil dehydrogenase activity. Journal of Environmental Quality, 11, 602–607.

    Article  CAS  Google Scholar 

  • Garcia, C., Hernandez, T., & Ceccanti, B. (1994). Biochemical parameters in soils regenerated by the addition of organic wastes. Waste Management Research, 12, 457–466.

    CAS  Google Scholar 

  • Gauthier, T. D., Seltz, W. R., & Grant, C. L. (1987). Effects of structural and compositional variations of dissolved humic materials on pyrene Koc values. Environmental Science & Technology, 21, 243–248.

    Article  CAS  Google Scholar 

  • Gianfreda, L., & Bollag, J. M. (1996). Influence of natural and anthropogenic factors on enzyme activity in soil. In G. Stotzky & J. M. Bollag (Eds.), Soil biochemistry (pp. 123–194). New York: Marcel Dekker.

    Google Scholar 

  • Gianfreda, L., Rao, M. A., Piotrowska, A., Palumbo, G., & Colombo, C. (2005). Soil enzyme activities as affected by anthropogenic alterations: Intensive agricultural practices and organic pollution. Science of the Total Environment, 341, 265–279.

    Article  CAS  Google Scholar 

  • Gianfreda, L., Sannino, F., Ortega, N., & Nannipieri, P. (1994). Activity of free and immobilized urease in soil: Effects of pesticides. Soil Biology & Biochemistry, 26, 777–784.

    Article  CAS  Google Scholar 

  • Guetzloff, T. F., & Rice, J. A. (1994). Does humic acid form a micelle? The Science of the Total Environment, 152, 31–35.

    Article  CAS  Google Scholar 

  • Haderlein, A., Legros, R., & Ramsay, B. (2001). Enhancing pyrene mineralization in contaminated soil by the addition of humic acids or composted contaminated soil. Applied Microbiology and Biotechnology, 56, 555–559.

    Article  CAS  Google Scholar 

  • Hamdi, H., Benzarti, S., Manusadzianas, L., Aoyama, I., & Jedidi, N. (2007). Bioaugmentation and biostimulation effects on PAH dissipation and soil ecotoxicity under controlled conditions. Soil Biology & Biochemistry, 39, 1926–1935.

    Article  CAS  Google Scholar 

  • Hargitai, L. (1993). The role of organic matter content and humus quality in the maintenance of soil fertility and in environmental protection. Landscape and Urban Planning, 27, 161–167.

    Article  Google Scholar 

  • Hayes, M. H. B., & Clapp, C. E. (2001). Humic substances: Considerations of compositions, aspects of structure, and environmental influences. Soil Science, 166, 723–737.

    Article  CAS  Google Scholar 

  • Hayes, M. H. B., & Wilson, W. S. (1997). Humic substances, peats and sludges (pp. 496). Cambridge: The Royal Society of Chemistry.

    Google Scholar 

  • Holman, H. Y., Nieman, K., Sorensen, D. L., Miller, C. D., Martin, M. C., Borch, T., et al. (2002). Catalysis of PAH biodegradation by humic acid shown in synchrotron infrared studies. Environmental Science & Technology, 36, 1276–1280.

    Article  CAS  Google Scholar 

  • Jackson, M. L. (1962). Soil chemical analysis (pp. 214–222). Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  • Johnson, W. P., & John, W. W. (1999). PCE solubilization and mobilization by commercial humic acid. Journal of Contaminant Hydrology, 35, 343–362.

    Article  CAS  Google Scholar 

  • Klavins, M., & Serzane, J. (2000). Use of humic substances in remediation of contaminated environments. In D. Wise, D. J. Trantolo, E. J. Cichon, H. I. Inyang, U. Stottmeisler, D. Marcel, E. I. Kozliak, D. Osteli, & T. L. Jacobson (Eds.), Bioremediation of contaminated soils (pp. 217–233). London: CRC.

    Google Scholar 

  • Kochany, J., & Smith, W. (2001). Application of humic substances in environmental engineering. In Proceedings of Humic Substances Seminar IV Boston MA (pp. 32).

  • Kulikova, N. A., Stepanova, E. V., & Koroleva, O. B. (2005). Mitigating activity of humic substances: Direct influence on biota. In K. Hatfield & N. Hertkorn (Eds.), Use of humic substances to remediate polluted environments: From theory to practice Perminova IV, NATO Science Series: IV: Earth and Environmental Sciences (vol. 52, pp. 285–310). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Lahlou, M., & Ortega-Calvo, J. J. (1999). Bioavailability of labile and desorption-resistant phenanthrene sorbed to montmorillonite clay containing humic fractions. Environmental Toxicology and Chemistry, 18, 2729–2735.

    Article  CAS  Google Scholar 

  • Leahy, S. G., & Colwell, R. R. (1990). Microbial degradation of hydrocarbons in the environment. Microbiology Research, 54, 305–315.

    CAS  Google Scholar 

  • Lesage, H. X., Novakowski, K. S., & Brown, S. (1995). The use of humic acids to enhance the removal of aromatic hydrocarbons from aquifer contaminated with petroleum products. Applied Environmental Microbiology, 54, 1864–1867.

    Google Scholar 

  • Li, G., Zhang, F., Sun, Y., Wong, J. W. C., & Fang, M. (2001). Chemical evaluation of sewage sludge composting as a mature indicator for composting process. Water Air and Soil Pollution, 132, 333–345.

    Article  CAS  Google Scholar 

  • Lizarazo, L. M., Jordá, J. D., Juárez, M., & Sánchez-Andreu, J. (2005). Effect of humic amendments on inorganic N, dehydrogenase and alkaline phosphatase activities of a Mediterranean soil. Biology and Fertility of Soils, 42, 172–177.

    Article  CAS  Google Scholar 

  • Malachowska-Jutsz, A., Mrozowska, J., Kozielska, M., & Miksch, K. (1997). Enzymatic activity in soil contaminated by petroleum derivatives during the process of its detoxification (in Polish). Biotechnologia, 1, 79.

    Google Scholar 

  • Margesin, R., Walder, G., & Schinner, F. (2000a). The impact of hydrocarbon remediation (diesel oil and polycyclic aromatic hydrocarbons) on enzyme activities and microbial properties of soil. Acta Biotechnologica, 20, 313–333.

    Article  CAS  Google Scholar 

  • Margesin, R., Zimmerbauer, A., & Schinner, F. (2000b). Monitoring of bioremediation by soil biological activities. Chemosphere, 40, 339–346.

    Article  CAS  Google Scholar 

  • Markkola, A. M., Tarvainen, O., Ahonen-Jonnarth, U., & Strommer, R. (2002). Urban polluted forest soils induce elevated root peroxidase activity in Scots pine (Pinus sylvestris L.) seedlings. Environmental Pollution, 116, 273–278.

    Article  CAS  Google Scholar 

  • Masciandaro, G., & Ceccanti, B. (1999). Assessing soil quality in different agro-ecosystems through biochemical and chemico-structural properties of humic substances. Soil & Tillage Research, 51, 129–137.

    Article  Google Scholar 

  • Mehrasbi, M. R., Haghighi, B., Shariat, M., Naseri, S., & Naddafi, K. (2003). Biodegradation of petroleum hydrocarbons in soil. Iranian Journal of Public Health, 32(3), 28–32.

    Google Scholar 

  • Mohn, W. W., & Stewart, G. R. (2000). Limiting factors for hydrocarbon biodegradation at low temperature in arctic soils. Soil Biology & Biochemistry, 32, 1161–1172.

    Article  CAS  Google Scholar 

  • Molina-Barahona, L., Rodriquez-Vazquez, R., Hernandez-Velasco, M., Vega-Jarquin, C., Zapata-Perez, O., Mendoza-Cantu, A., et al. (2004). Diesel removal from contaminated soils by biostimulation and supplementation with crop residues. Applied Soil Ecology, 27, 165–175.

    Article  Google Scholar 

  • Murphy, J., & Riley, J. P. (1962). A modified single solution method for determination of phosphate in natural waters. Analitica Chimica Acta, 27, 31–36.

    Article  CAS  Google Scholar 

  • Nannipieri, P., Grego, S., & Ceccanti, B. (1990). Ecological significance of the biological activity in soils. In J. M. Bollag & G. Stotzky (Eds.), Soil biochemistry (pp. 293–355). New York: Marcel Dekker.

    Google Scholar 

  • Nannipieri, P., Kandeler, E., & Ruggiero, P. (2002). Enzyme activities and microbiological and biochemical processes in soil. In R. G. Burns & R. P. Dick (Eds.), Enzymes in the environment. Activity, ecology and applications (pp. 1–33). New York: Marcel Dekker.

    Google Scholar 

  • Nanny, M. A., Stearns, C., Chen, L., Andrusevich, V. E., & Philp, R. P. (2001). Humat-induced remediation of petroleum contaminated surface soils in environmental issues and solutions in petroleum exploration, production and refining. In Abstracts of the 8th international petroleum environmental conference, Houston (pp. 122).

  • Naseby, D. C., & Lynch, J. M. (1997). Rhizopshere soil enzymes as indicators of perturbation caused by enzyme substrate addition and inoculation of a genetically modified strain of Pseudomonas fluorescens on wheat seed. Soil Biology & Biochemistry, 29, 1353–1362.

    Article  CAS  Google Scholar 

  • Oudot, J. (2000). Biodegradabilite’ du fuel de l’Erika. Comptes Rendus de l’Academie des Sciences III-Vie, 323, 945–950.

    Article  CAS  Google Scholar 

  • Pascual, J. A., García, C., & Hernández, T. (1999). Comparison of fresh and composted organic waste in their efficacy for the improvement of arid soil quality. Bioresource Technology, 68, 255–264.

    Article  CAS  Google Scholar 

  • Pascual, J. A., Garcia, C., Hernandez, T., Moreno, J. L., & Ros, M. (2000). Soil microbial activity as a biomarker of degradation and remediation processes. Soil Biology & Biochemistry, 32, 1877–1883.

    Article  CAS  Google Scholar 

  • Pepper, I. L., Gerba, C. P., & Brendecke, J. W. (1995). Environmental microbiology: A laboratory manual (pp. 51–56). New York: Academic.

    Google Scholar 

  • Peressutti, S. R., Alvarez, H. M., & Oscar, H. P. (2003). Dynamics of hydrocarbon-degrading bacteriocenosis ofan experimental oil pollution in Patagonian soil. International Biodeterioration and Biodegradation, 52, 21–30.

    Article  CAS  Google Scholar 

  • Piehler, M. F., Swistak, J. G., Pinckney, J. L., & Paerl, H. W. (1999). Stimulation of diesel fuel biodegradation by indigenous nitrogen fixing bacterial consortia. Microbial Ecology, 38, 69–78.

    Article  CAS  Google Scholar 

  • Radwan, S. S., Al-Mailem, D., El-Nemr, I., & Salamah, S. (2000). Enhanced remediation of hydrocarbon contaminated desert soil fertilized with organic carbons. International Biodeterioration and Biodegradation, 46, 129–132.

    Article  CAS  Google Scholar 

  • Rhykerd, R. L., Crews, B., McInnes, K. J., & Weaver, R. W. (1999). Impact of bulking agents, forced aeration and tillage on remediation of oil-contaminated soil. Bioresource Technology, 67, 279–285.

    Article  CAS  Google Scholar 

  • Richards, L. A. (1954). Diagnosis and improvement of saline and alkali soils (pp. 160). USDA Handbook 60 USA.

  • Richard, J. Y., & Vogel, T. M. (1999). Characterization of a soil bacterial consortium capable of degrading diesel fuel. International Biodeterioration & Biodegradation, 44, 93–100.

    Article  CAS  Google Scholar 

  • Sannino, F., & Gianfreda, L. (2001). Pesticide influence on soil enzymatic activities. Chemosphere, 45, 417–425.

    Article  CAS  Google Scholar 

  • Sastre, I., Vicente, M. A., & Lobo, M. C. (1996). Influence of the application of sewage sludges on soil microbial activity. Bioresource Technology, 57, 19–23.

    Article  CAS  Google Scholar 

  • Senesi, N., & Loffredo, E. (1999). The chemistry of soil organic matter. In D. L. Sparks (Ed.), Soil physical chemistry (2nd ed., pp. 239–370). Boca Raton: CRC.

    Google Scholar 

  • Senesi, N., Miano, T. M., & Brunetti, G. (1996). Humic-like substances in organic amendments and effects on native soil humic substances. In A. Piccolo (Ed.), Humic substances in terrestrial ecosystems (pp. 531–593). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Stevenson, F. J. (1994). Humus chemistry: Genesis, composition, reactions (pp. 496). New York: Wiley-Interscience.

    Google Scholar 

  • Tiwari, S. C., Tiwari, B. K., & Mishra, R. R. (1989). Microbial population and enzyme activities. Biology and Fertility of Soils, 8, 178–82.

    Article  Google Scholar 

  • Trasar-Cepeda, C., Leiro’s, M. C., Seoane, S., & Gil-Sotres, F. (2000). Limitations of soil enzymes as indicators of soil pollutions. Soil Biology & Biochemistry, 32, 1867–1875.

    Article  CAS  Google Scholar 

  • Valdrighi, M., Pera, A., Agnolucci, M., Frassinetti, S., Lunardi, D., & Vallini, G. (1996). Effects of compost-derived humic acids on vegetable biomass production and microbial growth within a plant (Cichorium intybus)–soil system: A comparative study. Agriculture, Ecosystems & Environment, 58, 133–144.

    Article  Google Scholar 

  • Vallini, C., Avio, L., & Giovannetti, M. (1993). Influence of humic acids on laurel growth, associated rhizospheric microorganisms, and mycorrhizal fungi. Biology and Fertility of Soils, 16, 1–4.

    Article  CAS  Google Scholar 

  • Van Beelen, P. V., & Doelman, P. (1997). Significance and application of microbial toxicity tests in assessing ecotoxicological risks of contaminants in soil and sediments. Chemosphere, 43, 455–499.

    Google Scholar 

  • Vidali, M. (2001). Bioremediation: An overview. Pure and Applied Chemistry, 73, 1163–1172.

    Article  CAS  Google Scholar 

  • Visser, S. A. (1985a). Effects of humic acids on number and activities of microorganisms within physiological groups. Organic Geochemistry, 8, 81–85.

    Article  CAS  Google Scholar 

  • Visser, S. A. (1985b). Physiological action of humic substances on microbial cells. Soil Biology & Biochemistry, 17, 457–462.

    Article  CAS  Google Scholar 

  • Weatherburn, M. B. (1967). Phenol-hypochlorite reaction for determination of ammonia. Analytical Chemistry, 39, 971–974.

    Article  CAS  Google Scholar 

  • Wyszkowska, J., Kucharski, J., & Waldowska, E. (2002). The influence of diesel oil contamination on soil enzyme activity. Rostlinna Vyroba, 48, 58–62.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oguz Can Turgay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turgay, O.C., Erdogan, E.E. & Karaca, A. Effect of humic deposit (leonardite) on degradation of semi-volatile and heavy hydrocarbons and soil quality in crude-oil-contaminated soil. Environ Monit Assess 170, 45–58 (2010). https://doi.org/10.1007/s10661-009-1213-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-009-1213-1

Keywords

Navigation