Skip to main content
Log in

Using dual classifications in the development of avian wetland indices of biological integrity for wetlands in West Virginia, USA

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Considerable resources are being used to develop and implement bioassessment methods for wetlands to ensure that “biological integrity” is maintained under the United States Clean Water Act. Previous research has demonstrated that avian composition is susceptible to human impairments at multiple spatial scales. Using a site-specific disturbance gradient, we built avian wetland indices of biological integrity (AW-IBI) specific to two wetland classification schemes, one based on vegetative structure and the other based on the wetland’s position in the landscape and sources of water. The resulting class-specific AW-IBI was comprised of one to four metrics that varied in their sensitivity to the disturbance gradient. Some of these metrics were specific to only one of the classification schemes, whereas others could discriminate varying levels of disturbance regardless of classification scheme. Overall, all of the derived biological indices specific to the vegetative structure-based classes of wetlands had a significant relation with the disturbance gradient; however, the biological index derived for floodplain wetlands exhibited a more consistent response to a local disturbance gradient. We suspect that the consistency of this response is due to the inherent nature of the connectivity of available habitat in floodplain wetlands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balcombe, C. K., Anderson, J. T., Fortney, R. H., & Kordek, W. S. (2005). Wildlife use of mitigation and reference wetlands in West Virginia. Ecological Engineering, 25, 85–99. doi:10.1016/j.ecoleng.2005.03.003.

    Article  Google Scholar 

  • Barbour, M. T., Gerritsen, J., Griffith, G. E., Frydenborg, R., McCarron, E., White, J. S., et al. (1996). A framework for biological criteria for Florida streams using benthic macroinvertebrates. Journal of the North American Benthological Society, 13, 185–211. doi:10.2307/1467948.

    Article  Google Scholar 

  • Barbour, M. T., Stribling, J. B., & Karr, J. R. (1995). Biological assessment and criteria: Tools for water resource planning and decision making. In W. S. Davis, & T. P. Simon (Eds.), Multimetric approach for establishing biocriteria and measuring biological condition (pp. 63–77). Ann Arbor: Lewis.

    Google Scholar 

  • Bedford, B., & Preston, E. (1988). Developing a scientific basis for assessing cumulative effects of wetland loss and degradation on landscape functions: Status, perspectives, and prospects. Environmental Management, 12, 751–771. doi:10.1007/BF01867550.

    Article  Google Scholar 

  • Blocksom, K. A. (2003). A performance comparison of metric scoring for a multimetric index for Mid-Atlantic Highlands streams. Environmental Management, 31, 670–682. doi:10.1007/s00267-002-2949-3.

    Article  Google Scholar 

  • Boeken, B., & Shachek, M. (2006). Linking community and ecosystem processes: The role of minor species. Ecosystems (New York, N.Y.), 9, 119–127. doi:10.1007/s10021-004-0079-x.

    Google Scholar 

  • Bradford, D. F., Franson, S. E., Neale, A. C., Heggem, D. T., Miller, G. R., & Canterbury, G. E. (1998). Bird species assemblages as indicators of biological integrity in Great Basin rangeland. Environmental Monitoring and Assessment, 49, 1–22. doi:10.1023/A:1005712405487.

    Article  Google Scholar 

  • Brinson, M. M. (1993). A hydrogeomorphic classification for wetlands. Technical Report WRP-DE-4. Vicksburg, MS: U.S. Army Engineers Waterways Experiment Station.

  • Brooks, R. P., O’Connell, T. J., Wardrop, D. H., & Jackson, L. E. (1998). Towards a regional index of biological integrity: The example of forested riparian ecosystems. Environmental Monitoring and Assessment, 51, 131–143. doi:10.1023/A:1005962613904.

    Article  Google Scholar 

  • Brown, S. C., & Smith, C. R. (1998). Breeding season bird use of recently restored versus natural wetlands of New York. The Journal of Wildlife Management, 62, 1480–1491. doi:10.2307/3802014.

    Article  Google Scholar 

  • Bryce, S. A., Hughes, R. M., & Kaufman, P. R. (2002). Development of a bird integrity index: Using bird assemblages as indicators of riparian condition. Environmental Management, 30, 294–310. doi: 10.1007/s00267-002-2702-y.

    Article  Google Scholar 

  • Canterbury, G. E., Martin, T. E., Petit, D. R., Petit, L. J., & Bradford, D. F. (2000). Bird communities and habitat as ecological indicators of forest condition in regional monitoring. Conservation Biology, 14, 544–558. doi:10.1046/j.1523-1739.2000.98235.x.

    Article  Google Scholar 

  • Cao, Y., Williams, D., & Williams, N. E. (1998). How important are rare species in aquatic ecology and bioassessment? Limnology and Oceanography, 43, 1403–1409.

    Google Scholar 

  • Chipps, S. R., Hubbard, D. E., Werlin, K. B., Haugerud, N. J., Powell, K. A., Thompson, J., et al. (2006). Association between wetland disturbance and biological attributes in floodplain wetlands. Wetlands, 26, 456–467. doi:10.1672/0277-5212(2006)26[497:ABWDAB]2.0.CO;2.

    Article  Google Scholar 

  • Cole, C. A., & Brooks, R. P. (2000). Patterns of wetland hydrology in the Ridge and Valley province, Pennsylvania, USA. Wetlands, 20, 438–447. doi:10.1672/0277-5212(2000)020<0438:POWHIT>2.0.CO;2.

    Article  Google Scholar 

  • Cole, C. A., Brooks, R. P., & Wardrop, D. H. (1997). Wetland hydrology as a function of hydrogeomorphic (HGM) subclass. Wetlands, 17, 456–467.

    Article  Google Scholar 

  • Cole, C. A., Urban, C. A., Russo, P., Murray, J., Hoyt, D., & Brooks, R. P. (2006). Comparison of the long-term water levels of created and natural wetlands in northern New York, USA. Ecological Engineering, 27, 166–172. doi:10.1016/j.ecoleng.2006.03.003.

    Article  Google Scholar 

  • Cowardin, L. M., Carter, V., Golet, F. C., & LaRoe, E. T. (1979). Classification of wetlands and deepwater habitats of the United States. Report FWS/ OBS-79/31, U.S. Fish and Wildlife Service.

  • Croonquist, M. J., & Brooks, R. P. (1991). Use of avian and mammalian guilds as indicators of cumulative impacts in riparian-wetland areas. Environmental Management, 15, 701–714. doi:10.1007/BF02589628.

    Article  Google Scholar 

  • DeLuca, W. V., Studds, C. E., Rockwood, L. L., & Marra, P. P. (2004). Influence of land use on the integrity of marsh bird communities of Chesapeake Bay, USA. Wetlands, 24, 837–847. doi:10.1672/0277-5212(2004)024[0837:IOLUOT]2.0.CO;2.

    Article  Google Scholar 

  • Forcey, G. M., Anderson, J. T., Ammer, F., & Whitmore, R. C. (2006). Comparison of two double-observer point-count approaches for estimating breeding bird abundance. The Journal of Wildlife Management, 70(6), 1674–1681. doi:10.2193/0022-541X(2006)70[1674:COTDPA]2.0.CO;2.

    Article  Google Scholar 

  • Galatowitsch, S. M., Whited, D. C., & Tester, J. R. (1999). Development of community metrics to evaluate recovery of Minnesota wetlands. Journal of Aquatic Ecosystem Stress and Recovery, 6, 217–234. doi:10.1023/A:1009935402572.

    Article  Google Scholar 

  • Gernes, M. C., & Helgen, J. C. (2002). Indexes of biological integrity (IBI) for large depressional wetlands in Minnesota. St. Paul: Minnesota Pollution Control Agency.

    Google Scholar 

  • Gerritsen, J. (1995). Additive biological indices for resource management. Journal of the North American Benthological Society, 14, 451–457. doi:10.2307/1467211.

    Article  Google Scholar 

  • Gerritsen, J., Burton, J., & Barbour, M. T. (2000). A stream condition index for West Virginia wadeable streams. Owing Mills: Tetra Tech.

    Google Scholar 

  • Gibbs, J. P., & Melvin, S. M. (1993). Call-response surveys for monitoring breeding waterbirds. The Journal of Wildlife Management, 57, 27–34. doi:10.2307/3808996.

    Article  Google Scholar 

  • Gibbs, J. P., & Melvin, S. M. (1997). Power to detect trends in waterbird abundance with call-response surveys. The Journal of Wildlife Management, 61, 1262–1267. doi:10.2307/3802125.

    Article  Google Scholar 

  • Harris, L. D. (1988). The nature of cumulative impacts on biotic diversity of wetland vertebrates. Environmental Management, 12, 675–693. doi:10.1007/BF01867545.

    Article  Google Scholar 

  • Hemond, H. F., & Benoit, J. (1988). Cumulative impacts on water quality functions of wetlands. Environmental Management, 12, 639–653. doi:10.1007/BF01867542.

    Article  Google Scholar 

  • Hill, B. H., Herlihy, A. T., Kaufman, P. R., DeCelles, S. J., & Vander Borgh, M. A. (2003). Assessment of streams of the eastern United States using a periphyton index of biotic integrity. Ecological Indicators, 2, 325–328. doi:10.1016/S1470-160X(02)00062-6.

    Article  CAS  Google Scholar 

  • Hughes, R. M., Kaufmann, P. R., Herlihy, A. T., Kincaid, T. M., Reynolds, L., & Larsen, D. P. (1998). A process for developing and evaluating indices of fish assemblage integrity. Canadian Journal of Fisheries and Aquatic Sciences, 55, 1618–1631. doi:10.1139/cjfas-55-7-1618.

    Article  Google Scholar 

  • Kantrud, H. A., & Stewart, R. E. (1977). Use of natural basin wetlands by breeding waterfowl in North Dakota. The Journal of Wildlife Management, 41, 243–253. doi:10.2307/3800601.

    Article  Google Scholar 

  • Karr, J. R. (1999). Defining and measuring river health. Freshwater Biology, 41, 221–234. doi:10.1046/j.1365-2427.1999.00427.x.

    Article  Google Scholar 

  • Mack, J. J. (2001). Ohio Rapid Assessment Method for wetlands v. 5.0, user’s manual and scoring forms. Columbus: Ohio Environmental Protection Agency, Division of Surface Water, Wetland Ecology Unit.

    Google Scholar 

  • Mack, J. J. (2004). Integrated wetland assessment program. Part 9: Field manual for the vegetation index of biotic integrity for wetlands v. 1.3. Columbus: Ohio Environmental Protection Agency, Wetland Ecology Group, Division of Surface Water.

    Google Scholar 

  • Maxted, J. R., Barbour, M. T., Gerritsen, J., Poretti, V., Primrose, N., Silvia, A., et al. (2000). Assessment framework for mid-Atlantic coastal plain streams using benthic macroinvertebrates. Journal of the North American Benthological Society, 19(1), 128–144. doi:10.2307/1468286.

    Article  Google Scholar 

  • McCormick, F. H., Hughes, R. M., Kaufman, P. R., Peck, D. V., Stoddard, J. L., & Herlihy, A. T. (2001). Development of an index of biotic integrity for the Mid-Atlantic Highland region. Transactions of the American Fisheries Society, 130, 857–877. doi:10.1577/1548-8659(2001)130<0857:DOAIOB>2.0.CO;2.

    Article  Google Scholar 

  • Micacchion, M. (2004). Integrated wetland assessment program. Part 7: Amphibian index of biotic integrity (AmphIBI) for Ohio wetlands. Columbus: Ohio Environmental Protection Agency, Wetland Ecology Group, Division of Surface Water.

    Google Scholar 

  • Miller, J. N., Brooks, R. P., & Croonquist, M. J. (1997). Effects of landscape patterns on biotic communities. Landscape Ecology, 12, 137–153. doi:10.1023/A:1007970716227.

    Article  Google Scholar 

  • Miller, S. J., Wardrop, D. H., Mahaney, W. M., & Brooks, R. P. (2006). A plant-based index of biological integrity (IBI) for headwater wetlands in central Pennsylvania. Ecological Indicators, 6, 290–312. doi:10.1016/j.ecolind.2005.03.011.

    Article  Google Scholar 

  • Murkin, H. R., Murkin, E. J., & Ball, J. P. (1997). Avian habitat selection and prairie wetland dynamics: A 10 year experiment. Ecological Applications, 7, 1144–1159. doi:10.1890/1051-0761(1997)007[1144:AHSAPW]2.0.CO;2.

    Article  Google Scholar 

  • Naugle, D. E., Johnson, R. R., Estey, M. E., & Higgins, K. F. (2001). A landscape approach to conserving wetland bird habitat in the Prairie Pothole Region of eastern South Dakota. Wetlands, 20, 588–604. doi:10.1672/0277-5212(2000)020[0588:ALATCW]2.0.CO;2.

    Article  Google Scholar 

  • Noson, A. C., & Hutto, R. L. (2005). Using bird indices of biotic integrity to assess the condition of wetlands in Montana. Final Report to Montana Department of Environmental Quality, Avian Science Center, Missoula, MT.

  • O’Connell, T. J., Jackson, L. E., & Brooks, R. P. (1998). A bird community index of biotic integrity for the Mid-Atlantic highlands. Environmental Monitoring and Assessment, 51, 145–156. doi:10.1023/A:1005914714813.

    Article  Google Scholar 

  • O’Connell, T. J., Jackson, L. E., & Brooks, R. P. (2000). Bird guilds as indicators of ecological condition in the central Appalachians. Ecological Applications, 10, 1706–1721. doi:10.1890/1051-0761(2000)010[1706:BGAIOE]2.0.CO;2.

    Article  Google Scholar 

  • Omernik, J. M. (1987). Ecoregions of the conterminous United States. Annals of the Association of American Geographers. Association of American Geographers, 77, 118–125. doi:10.1111/j.1467-8306.1987.tb00149.x.

    Article  Google Scholar 

  • Omernik, J. M. (1995). Ecoregions: A spatial framework for environmental management. In W. S. Davis, & T. P. Simon (Eds.), Biological assessment and criteria: Tools for water resource planning and decision making. Boca Raton, FL: Lewis Publishers.

    Google Scholar 

  • Petit, L. J. (1991). Adaptive tolerance of cowbird parasitism by prothonotary warblers: A consequence of nest-site limitation? Animal Behaviour, 41, 425–432. doi:10.1016/S0003-3472(05)80843-7.

    Article  Google Scholar 

  • Ralph, C. J., Sauer, J. R., & Droege, S. E. (1995). Monitoring bird populations by point counts: Standards and applications. General Technical Report PSW-GTR-149, U.S. Forest Service. Pacific Southwest Research Station.

  • Snell-Rood, E. C., & Cristol, D. A. (2003). Avian communities of created and natural wetlands: Bottomland forests in Virginia. The Condor, 105, 303–315. doi:10.1650/0010-5422(2003)105[0303:ACOCAN]2.0.CO;2.

    Article  Google Scholar 

  • Stapanian, M., Waite, T. A., Krzys, G., Mack, J. J., & Micacchion, M. (2004). Rapid assessment indicator of wetland integrity as an unintended predictor of avian diversity. Hydrobiologia, 520, 119–126. doi:10.1023/B:HYDR.0000027731.16535.53.

    Article  Google Scholar 

  • Stevenson, R. J., & Hauer, F. R. (2002). Integrating hydrogeomorphic and index of biotic integrity approaches for environmental assessment of wetlands. Journal of the North American Benthological Society, 21, 502–513. doi:10.2307/1468486.

    Article  Google Scholar 

  • Twedt, D. J., Wilson, R. R., Henne-Kerr, J. L., & Grosshuesch, D. A. (2002). Avian response to bottomland hardwood reforestation: The first 10 years. Restoration Ecology, 10, 645–655. doi:10.1046/j.1526-100X.2002.01045.x.

    Article  Google Scholar 

  • U.S. Geological Survey (2009). North American breeding bird survey home. http://www.pwrc.usgs.gov/BBS/. Accessed 19 February 2009.

  • VanRees-Siewert, K. L., & Dinsmore, J. J. (1996). Influence of wetland age on bird use of restored wetlands in Iowa. Wetlands, 16, 577–582.

    Article  Google Scholar 

  • Veselka, W. (2008). Developing volunteer-driven indices of biological integrity for wetlands in West Virginia, USA. Master’s Thesis, West Virginia University.

  • Weller, W. M. (1988). Issues and approaches in assessing cumulative impacts on waterbird habitats in wetlands. Environmental Management, 12, 695–701. doi:10.1007/BF01867546.

    Article  Google Scholar 

  • Whited, D. C., Galatowitsch, S. M., Tester, J. R., Schik, K., Lehtinen, R. M., & Husveth, J. (2000). The importance of local and regional factors in predicting effective conservation planning strategies for wetland bird communities in agricultural and urban landscapes. Landuse and Urban Planning, 49, 49–65. doi:10.1016/S0169-2046(00)00046-3.

    Article  Google Scholar 

  • Wilcox, D. A., Meeker, J. E., Hudson, P. L., Armitage, B. J., Black, M. G., & Uzarski, D. G. (2002). Hydrologic variability and the application of index of biotic integrity metrics to wetlands: A Great Lakes evaluation. Wetlands, 22, 588–615. doi:10.1672/0277-5212(2002)022[0588:HVATAO]2.0.CO;2.

    Article  Google Scholar 

  • Winter, T. C. (1988). A conceptual framework for assessing cumulative impacts on the hydrology of nontidal wetlands. Environmental Management, 12, 605–620. doi:10.1007/BF01867539.

    Article  Google Scholar 

  • Woods, A. J., Omernik, J. M., & Brown, D. D. (1999). Level III and IV ecoregions of Delaware, Maryland, Pennsylvania, Virginia, and West Virginia. Corvallis, OR: U.S. Environmental Protection Agency.

    Google Scholar 

  • Yuan, L. L., & Norton, S. B. (2004). Assessing the relative severity of stressors at a watershed scale. Environmental Monitoring and Assessment, 98, 323–349. doi:10.1023/B:EMAS.0000038194.30236.ad.

    Article  Google Scholar 

  • Zedler, J. B. (2003). Wetlands at your service: Reducing impacts of agriculture at the watershed scale. Frontiers in Ecology and the Environment, 1, 65–72.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James T. Anderson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Veselka, W., Anderson, J.T. & Kordek, W.S. Using dual classifications in the development of avian wetland indices of biological integrity for wetlands in West Virginia, USA. Environ Monit Assess 164, 533–548 (2010). https://doi.org/10.1007/s10661-009-0911-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-009-0911-z

Keywords

Navigation