Skip to main content

Advertisement

Log in

Land cover classification with an expert system approach using Landsat ETM imagery: a case study of Trabzon

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The main objective of this study is to generate a knowledge base which is composed of user-defined variables and included raster imagery, vector coverage, spatial models, external programs, and simple scalars and to develop an expert classification using Landsat 7 (ETM+) imagery for land cover classification in a part of Trabzon city. Expert systems allow for the integration of remote-sensed data with other sources of geo-referenced information such as land use data, spatial texture, and digital elevation model to obtain greater classification accuracy. Logical decision rules are used with the various datasets to assign class values for each pixel. Expert system is very suitable for the work of image interpretation as a powerful means of information integration. Landsat ETM data acquired in the year 2000 were initially classified into seven classes for land cover using a maximum likelihood decision rule. An expert system was constructed to perform post-classification sorting of the initial land cover classification using additional spatial datasets such as land use data. The overall accuracy of expert classification was 95.80%. Individual class accuracy ranged from 75% to 100% for each class.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bastin, L. (1997). Comparison of fuzzy c-means classification, linear mixture modeling and MLC probabilities as tools for unmixing coarse pixels. International Journal of Remote Sensing, 18, 3629–3648. doi:10.1080/014311697216847.

    Article  Google Scholar 

  • Berberoglu, S., Lloyd, C. D., Atkinson, P. M., & Curran, P. J. (2000). The integration of spectral and textural information using neural networks for land cover mapping in the Mediterranean. Computers & Geosciences, 26, 385–396. doi:10.1016/S0098-3004(99)00119-3.

    Article  Google Scholar 

  • Chien, F. J., & Chou, T. Y. (2000). The study of knowledge based database assist for urban land use classification. GIS Research Center, Department of Land Management, Feng Chia University.

  • Cole, C., Wentz, E., & Christensen, P. (2005). Expert system approach for classifying land cover in New Delhi India using ASTER imagery, 3rd International Symposium on Remote Sensing and Data Fusion Over Urban Areas (URBAN 2005), Tempe, AZ, USA, 14–16 March 2005.

  • Congalton, R. G., & Green, K. (1999). Assessing the accuracy of remotely sensed data: Principles and practices. New York: Lewis.

    Google Scholar 

  • ERDAS (1999). ERDAS field guide (5th ed.). Atlanta: ERDAS.

    Google Scholar 

  • Fisher, P. F., & Pathirana, S. (1990). The evaluation of fuzzy membership of land cover classes in the suburban zone. Remote Sensing of Environment, 34, 121–132. doi:10.1016/0034-4257(90)90103-S.

    Article  Google Scholar 

  • Foody, G. M. (2000). Estimation of sub-pixel land cover composition in the presence of untrained classes. Computers & Geosciences, 26, 469–478. doi:10.1016/S0098-3004(99)00125-9.

    Article  Google Scholar 

  • Gong, P., & Howarth, P. J. (1990). The use of structural information for improving land-cover classification accuracies at the rural–urban fringe. Photogrammetric Engineering and Remote Sensing, 56(1), 67–73.

    Google Scholar 

  • Huete, A. R. (1988). A soil-adjusted vegetation index SAVI. Remote Sensing of Environment, 25, 295–309. doi:10.1016/0034-4257(88)90106-X.

    Article  Google Scholar 

  • Iron, J. R., & Petersen, G. W. (1981). Texture transforms of remote sensing data. Remote Sensing of Environment, 11, 359–370. doi:10.1016/0034-4257(81)90033-X.

    Article  Google Scholar 

  • Jensen, J. R. (1996). Introductory image processing: A remote sensing perspective (2nd ed.). Upper Saddle River: Prentice-Hall.

    Google Scholar 

  • Kumar, A. S., Basu, S. K., & Majumdar, K. L. (1997). Robust classification of multispectral data using multiple neural networks and fuzzy integral. IEEE Transactions on Geoscience and Remote Sensing, 35, 787–790. doi:10.1109/36.582004.

    Article  Google Scholar 

  • Lyon, J. G., Yuan, D., Lunetta, R. S., & Elvidge, C. D. (1998). A change detection experiment using vegetation indices. Photogrammetric Engineering and Remote Sensing, 642, 143–150.

    Google Scholar 

  • Mattikalli, N. M. (1997). Soil color modeling for the visible and near-infrared bands of Landsat sensors using laboratory spectral measurements. Remote Sensing of Environment, 59, 14–28. doi:10.1016/S0034-4257(96)00075-2.

    Article  Google Scholar 

  • Paola, J. D., & Schowengerdt, R. A. (1995). A detailed comparison of back propagation neural networks and maximum likelihood classifiers for urban land use classification. IEEE Transactions on Geoscience and Remote Sensing, 33, 981–996. doi:10.1109/36.406684.

    Article  Google Scholar 

  • Pax-Lenney, M., & Woodcock, C. E. (1997). The effect of spatial resolution on the ability to monitor the status of agricultural lands. Remote Sensing of Environment, 61, 210–220. doi:10.1016/S0034-4257(97)00003-5.

    Article  Google Scholar 

  • Ridd, M. K. (1995). Exploring a V–I–S (vegetation–impervious surface–soil) model for urban ecosystem analysis through remote sensing: Comparative anatomy for cities. International Journal of Remote Sensing, 16, 2165–2185. doi:10.1080/01431169508954549.

    Article  Google Scholar 

  • Stefanov, W. L., & Netzband, M. (2005). Assessment of ASTER land cover and MODIS NDVI data at multiple scales for ecological characterization of an arid urban center. Remote Sensing of Environment, 99, 31–43. doi:10.1016/j.rse.2005.04.024.

    Article  Google Scholar 

  • Stefanov, W. L., Ramsey, M. S., & Christensen, P. R. (2001). Monitoring urban land cover change: An expert system approach to land cover classification of semiarid to arid urban centers. Remote Sensing of Environment, 77, 173–185. doi:10.1016/S0034-4257(01)00204-8.

    Article  Google Scholar 

  • Stuckens, J., Coppin, P. R., & Bauer, M. E. (2000). Integrating contextual information with per-pixel classification for improved land cover classification. Remote Sensing of Environment, 71, 282–296. doi:10.1016/S0034-4257(99)00083-8.

    Article  Google Scholar 

  • Sultan, M., Arvidson, R. E., Sturchio, N. C., & Guinness, E. A. (1987). Lithologic mapping in arid regions with Landsat TM data: Meatiq dome. Geological Society of America Bulletin, 99, 748–762. doi:10.1130/0016-7606(1987)99<748:LMIARW>2.0.CO;2.

    Article  Google Scholar 

  • Vogelmann, J. E., Sohl, T., & Howard, S. M. (1998). Regional characterization of land cover using multiple sources of data. Photogrammetric Engineering and Remote Sensing, 64, 45–57.

    Google Scholar 

  • Wilkie, D. S., & Finn, J. T. (1996). Remote sensing imagery for natural resources monitoring: A guide for first-time users. New York: Columbia University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oguzhan Kahya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kahya, O., Bayram, B. & Reis, S. Land cover classification with an expert system approach using Landsat ETM imagery: a case study of Trabzon. Environ Monit Assess 160, 431–438 (2010). https://doi.org/10.1007/s10661-008-0707-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-008-0707-6

Keywords

Navigation