Skip to main content

Advertisement

Log in

Monitoring the effect of urban green areas on the heat island in Athens

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The role of urban green areas in the microclimatic conditions of cities, during summer, is investigated in this paper through monitoring campaigns carried out at the National garden, at the city centre of Athens. Two types of investigations were carried out: i) a microscopic one that investigated the thermal conditions inside the Garden and the immediate surrounding urban area and ii) a macroscopic one that compared the temperature profile of the Garden with that of the greater city centre area. It was concluded that in microscopic level, the temperature profile inside the National Garden and the immediate surrounding urban area did not showed a clear evidence of the influence of the Garden and it was dependent on the characteristics of each location. In a macroscopic scale, the Garden was found cooler than the other monitored urban locations and temperature differences were mainly greater during the night, especially in streets with high building height to street width (H/W) ratio and low traffic, while in streets with high anthropogenic heat during the day, the biggest temperature differences were recorded during the day.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akbari, H., Davis, S., Dorsano, S., Huang, J., & Winnett, S. (1992). Cooling our communities: A guidebook to tree planting and light coloured surfacing, (pp. 22P-2001; 217 pp.). Washington, DC: U.S.E.P.A., Office of Policy Analysis, Climate Change Division Report.

  • Avissar, B. (1996). Potential effects of vegetation on the urban thermal environment. Atmospheric Environment, 30(3), 437–448. doi:10.1016/1352-2310(95)00013-5.

    Article  CAS  Google Scholar 

  • Barradas, V. L., Tejeda-Martinez, A., & Jauregui, E. (1999). Energy balance measurements in a suburban vegetated area in Mexico City. Atmospheric Environment, 33, 4109–4113. doi:10.1016/S1352-2310(99)00152-1.

    Article  CAS  Google Scholar 

  • Ca, V. T., Asaeda, T., & Abu, E. M. (1998). Reduction in air conditioning energy caused by a nearby park. Energy and Buildings, 9, 83–92. doi:10.1016/S0378-7788(98)00032-2.

    Article  Google Scholar 

  • Chen, Y., & Wong, N. H. (2006). Thermal benefits of city parks. Energy and Buildings, 38, 105–120. doi:10.1016/j.enbuild.2005.04.003.

    Article  Google Scholar 

  • Dimoudi, A. (1996). Urban design. In M. Santamouris & D. Assimakopoulos (Eds.), Passive cooling of buildings (pp. 95–128). London: James & James Science.

    Google Scholar 

  • Dimoudi, A., & Nikolopoulou, M. (2003). Vegetation in urban environment: Microclimatic analysis and benefits. Energy and Buildings, 35, 69–76. doi:10.1016/S0378-7788(02)00081-6.

    Article  Google Scholar 

  • Doulos, L., Santamouris, M., & Livada, I. (2004). Passive cooling of outdoor urban spaces. The role of materials. Solar Energy, 77(2), 231–249. doi:10.1016/j.solener.2004.04.005.

    Article  CAS  Google Scholar 

  • Georgi, J., & Zafiriadis, K. (2006). The impact of park trees on microclimate in urban areas. Urban Ecosystems, 9, 195–209. doi:10.1007/s11252-006-8590-9.

    Article  Google Scholar 

  • Givoni, B., Noguchi, M., Saaroni, H., Potchter, O., Yaacov, Y., Feller, N., et al. (2003). Outdoor comfort research issues. Energy and Buildings, 35, 77–86. doi:10.1016/S0378-7788(02)00082-8.

    Article  Google Scholar 

  • Gomez, F., Gaja, E., & Reig, A. (1998). Vegetation and climatic changes in a city. Ecological Engineering, 10, 355–360. doi:10.1016/S0925-8574(98)00002-0.

    Article  Google Scholar 

  • Grimmond, C. B. S., Souch, C., & Hubble, M. D. (1996). Influence of tree cover on summertime surface energy balance fluxes, San Gabriel, Los Angeles. Climate Research, 6, 45–57. doi:10.3354/cr006045.

    Article  Google Scholar 

  • Hassid, S., Santamouris, M., Papanikolaou, M., Linardi, A., & Klitsikas, N. (2000). The effect of the heat island on air conditioning load. Energy and Buildings, 32(2), 131–141. doi:10.1016/S0378-7788(99)00045-6.

    Article  Google Scholar 

  • Herrington, L. P., Bertolin, G. E., & Leonard, R. E. (1972). Microclimate of a suburban park. Paper presented at the Conference ‘The Urban Environment’ (pp. 43–44). Boston: American Meteorological Society.

    Google Scholar 

  • Jauregui, E. (1990). Influence of a large urban park on temperature and convective precipitation in a tropical city. Energy and Buildings, 15–16, 457–463.

    Article  Google Scholar 

  • Jonsson, P. (2004). Vegetation as an urban climate control in the subtropical city of Gaborone, Botswana. International Journal of Climatology, 24, 1307–1322. doi:10.1002/joc.1064.

    Article  Google Scholar 

  • Kawashima, S. (1994). Relation between vegetation, surface temperature and surface composition in the Tokyo region during winter. Remote Sensing of Environment, 50, 52–60. doi:10.1016/0034-4257(94)90094-9.

    Article  Google Scholar 

  • Kosmopoulos, P., & Papanastasiou, C. (2005). Pilot study of the urban green in the city of Thessaloniki. In Paper presented at the 13th International Symposium on ‘Environmental Pollution and its Impact on Life in the Mediterranean Region’, Thessaloniki, Greece, October.

  • Kruger, E., & Givoni, B. (2007). Outdoor measurements and temperature comparisons of seven monitoring stations: Preliminary studies in Curitiba, Brazil. Building and Environment, 42, 1685–1698. doi:10.1016/j.buildenv.2006.02.019.

    Article  Google Scholar 

  • Livada, I., Santamouris, M., Niachou, K., Papanikolaou, N., & Mihalakakou, G. (2002). Determination of places in the great Athens area where the heat island effect is observed. Theoretical and Applied Climatology, 71, 219–230. doi:10.1007/s007040200006.

    Article  Google Scholar 

  • Mihalakakou, G., Flocas, H., Santamouris, M., & Helmis, C. (2002). Application of neural networks to the simulation of the heat island over Athens, Greece, using synoptic types as a predictor. Applied Meteorology, 41(5), 519–527. doi:10.1175/1520-0450(2002)041<0519:AONNTT>2.0.CO;2.

    Article  Google Scholar 

  • Mihalakakou, G., Santamouris, M., Papanikolaou, N., Cartalis, C., & Tsangrassoulis, A. (2004). Simulation of the urban heat island phenomenon in Mediterranean climates. Journal of Pure and Applied Geophysics, 161, 429–451. doi:10.1007/s00024-003-2447-4.

    Article  Google Scholar 

  • Narita, K. I., Mikami, T., Sugawara, H., Honjo, T., & Kimura, K. (2004). Cool-island and cold air seeping phenomena in an urban park, Shinjuku Gyoen, Tokyo. Geographical Review of Japan, 77(5), 403–420.

    Google Scholar 

  • Nichol, J. E. (1996). High-resolution surface temperature related to urban morphology in a tropical city: A satellite-based study. Applied Meteorology, 35, 135–146. doi:10.1175/1520-0450(1996)035<0135:HRSTPR>2.0.CO;2.

    Article  Google Scholar 

  • Parker, J. R. (1989). The impact of vegetation on air conditioning consumption. Controlling summer heat island. In H. Akbari, K. Garbesi, & P. Martien (Eds.), Controlling summer heat islands. In Paper presented at the workshop ‘Saving energy and reducing atmospheric pollution by controlling summer heat island’ (pp. 42–52). Berkeley, California: University of California.

    Google Scholar 

  • Plumley, H. J. (1975). The design of outdoor urban spaces for thermal comfort. In Paper presented at the conference on ‘Metropolitan physical environment (pp. 15252–15262). USDA Forest Service general technical Report NE-25, Upper Darly, Pennsylvania, US Department of Agriculture Forest Service.

  • Potchter, O., Cohen, P., & Bitan, A. (2006). Climatic behaviour of various urban parks during hot and humid summer in the Mediterranean city of Tel Aviv Israel. International Journal of Climatology, 26, 1695–1711. doi:10.1002/joc.1330.

    Article  Google Scholar 

  • Robitu, M., Musy, M., Inard, C., & Groleau, D. (2006). Modelling the influence of vegetation and water pond on urban microclimate. Solar Energy, 80, 435–447. doi:10.1016/j.solener.2005.06.015.

    Article  Google Scholar 

  • Saito, I. (1990/1991). Study of the effect of green areas on the thermal environment in an urban area. Energy and Buildings, 15–16, 493–498.

    Article  Google Scholar 

  • Santamouris, M. (2001). The role of green spaces. In M. Santamouris (Ed.), Energy and climate in the urban built environment (pp. 145–159). London: James & James Science.

    Google Scholar 

  • Santamouris, M. (2007). Heat island research in Europe– The state of the art. Advances in Building Energy Research (ABER), 1.

  • Santamouris, M., Mihalakakou, G., & Assimakopoulos, D. (1998). Modelling ambient air temperature time series using neural networks. Journal of Geophysical Research, 103(D16), 19509–19517. doi:10.1029/98JD02002.

    Article  Google Scholar 

  • Santamouris, M., Mihalakakou, G., Papanikolaou, N., & Assimakopoulos, D. N. (1999). A neural network approach for modelling the heat island phenomenon in urban areas during the summer period. Geophysical Research Letters, 26(3), 337–340. doi:10.1029/1998GL900316.

    Article  Google Scholar 

  • Santamouris, M., Papanikolaou, N., Livada, I., Koronakis, I., Georgakis, C., & Assimakopoulos, D. N. (2001). On the impact of urban climate to the energy consumption of buildings. Solar Energy, 70(3), 201–216. doi:10.1016/S0038-092X(00)00095-5.

    Article  Google Scholar 

  • Santamouris, M., Paraponiaris, K., & Mihalakakou, G. (2007). Estimating the ecological footprint of the heat island in Athens. Climatic Change, 80, 265–276. doi:10.1007/s10584-006-9128-0.

    Article  CAS  Google Scholar 

  • Sharlin, N., & Hoffman, M. E. (1984). The urban complex as a factor in the air temperature pattern in a Mediterranean coastal region. Energy and Buildings, 7, 149–158. doi:10.1016/0378-7788(84)90036-7.

    Article  Google Scholar 

  • Shashua-Bar, L., & Hoffman, M. E. (2000). Vegetation as a climatic component in the design of an urban street– An empirical model for predicting the cooling effect of urban green areas with trees. Energy and Buildings, 31, 221–235. doi:10.1016/S0378-7788(99)00018-3.

    Article  Google Scholar 

  • Shashua-Bar, L., & Hoffman, M. E. (2003). Geometry and orientation aspects in passive cooling of canyon streets with trees. Energy and Buildings, 35, 61–68. doi:10.1016/S0378-7788(02)00080-4.

    Article  Google Scholar 

  • Shobhakar, D., & Hanaki, K. (2002). Improvement of urban thermal environment by managing heat discharge sources and surface modification in Tokyo. Energy and Buildings, 34, 13–23. doi:10.1016/S0378-7788(01)00084-6.

    Article  Google Scholar 

  • Sonne, J. K., & Viera, R. K.(2000). Cool neighbourhoods: The measurement of small scale heat island. In Paper presented at the ACEEE (American Council for an Energy-Efficient Economy) Summer Study on Energy Efficiency in Buildings (Vol. 1, pp. 1307–1318).

  • Souch, C. A., & Souch, C. (1993). The effect of trees on summertime below canopy urban climates: A case study, Bloomington, Indiana. Arboriculture, 9(5), 303–312.

    Google Scholar 

  • Spronken-Smith, R. A., & Oke, T. R. (1998). The thermal regime of urban parks in two cities with different summer climates. International Journal of Remote Sensing, 19, 2084–2104.

    Google Scholar 

  • Synnefa, A., Santamouris, M., & Akbari, H. (2007b). Estimating the effect of using cool coatings on energy loads and thermal comfort in residential buildings in various climatic conditions. Energy and Buildings, 39(11), 1167–1174. doi:10.1016/j.enbuild.2007.01.004.

    Article  Google Scholar 

  • Synnefa, A., Santamouris, M., & Apostolakis, K. (2007a). On the development, optical properties and thermal performance of cool coloured coatings for the urban environment. Solar Energy, 81, 488–497. doi:10.1016/j.solener.2006.08.005.

    Article  CAS  Google Scholar 

  • Synnefa, A., Santamouris, M., & Livada, I. (2006). A study of the thermal performance of reflective coatings for the urban environment. Solar Energy, 80(8), 968–981.

    Google Scholar 

  • Taha, H. G., Akbari, H., & Rosenfeld, A. (1988). Vegetation canopy micro-climate: A field project in Davis, California. Berkeley, CA: Lawrence Berkley in Davis. Laboratory Report-24593.

  • Thayer, R. L., & Maeda, B. T. (1985). Measuring street tree impact on solar performance: A five-climate computer modelling study. Arboriculture, 11(1), 1–12.

    Google Scholar 

  • Watkins, R., Palmer, J., Kolokotroni, M., & Littlefair, P. (2002). The London heat island – Surface and air temperature in a park and street gorges. ASHRAE Transactions, 108(1), 419–427.

    Google Scholar 

  • Wong, N. H., & Chen, Y. (2005). Study of green areas and urban heat island in a tropical city. Habitat International, 29(3), 547–558. doi:10.1016/j.habitatint.2004.04.008.

    Article  Google Scholar 

  • Zoulia, E. (2005). Effect of green areas in the urban heat island. MSc Dissertation, Physics Department, National Kapodistrian University of Athens (in Greek).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Dimoudi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zoulia, I., Santamouris, M. & Dimoudi, A. Monitoring the effect of urban green areas on the heat island in Athens. Environ Monit Assess 156, 275–292 (2009). https://doi.org/10.1007/s10661-008-0483-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-008-0483-3

Keywords

Navigation