Skip to main content

Advertisement

Log in

Changes in structural attributes of plant communities along disturbance gradients in a dry deciduous forest of Western Ghats, India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Changes in tree and understory plant diversity and community composition in two sites at different disturbance levels were studied on the Anaikatty hills, Western Ghats. Systematic sampling using small scale permanent quadrates (50 × 20 m for trees, 5 × 5 m for shrubs/saplings, 1 × 1 m for herbs/seedlings) enumerated 3,376 individuals of trees (106 species), 8,599 of individuals shrubs (122 species) and 16,659 individuals of herbs (145 species). Among the two sites, species richness and diversity were highest for low disturbed stand (98 and 3.9, respectively) compared to high disturbed site (45 and 2.71, respectively). Result of cluster analysis showed that two distinct clusters were formed on the basis of disturbance of the area in concordance with our field observation. A total of 37 species were common to both sites, sixty one species exclusively found in low disturbed site and eight species were pertained to highly disturbed site. Mann–Whitney test based on Monte Carlo approximation at 95% confidence levels indicated that both populations were not entirely different. The clear difference was only observed for average basal area of trees, density of seedlings, number of species, density and diversity for shrubs and number of species and diversity for herb. The species composition were different in two stand i.e., Nothopegia racemosa–Albizia amara–Maba neilghrrensis in low disturbed stand and Albizia amara–Pleiospermium alatumBauhinia racemosa in high disturbed stand. The major disturbance factors identification using spearman rank correlation indicated that the disturbance in low disturbed habitats were mostly from past logging followed by cutting and illicit felling and grazing, while in high disturbed habitats, it was human presence, past logging and lopping and fuel wood collection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abugov, R. (1982). Species diversity and the phasing of disturbance. Ecology, 63, 289–293. doi:10.2307/1938944.

    Article  Google Scholar 

  • Alther, G. A. (1979). A simplified statistical sequence applied to routine water quality analysis: A case history. Ground Water, 17, 556–561. doi:10.1111/j.1745-6584.1979.tb03356.x.

    Article  CAS  Google Scholar 

  • Anitha, K., Balasubramanian, P., & Prasad, S. N. (2007). Tree community structure and regeneration in Anaikatty hills, Western Ghats. Indian Journal of Forestry, 30, 315–324.

    Google Scholar 

  • Armesto, J. J., & Pickett, S. T. A. (1985). Experiments on disturbance in old-Iield plant communities: Impact on species richness and abundance. Ecology, 66, 230–240. doi:10.2307/1941323.

    Article  Google Scholar 

  • Ayyappan, N., & Parthasarathy, N. (1999). Biodiversity inventory of trees in a large-scale permanent plot of tropical evergreen forest at Varagalaiar, Anamalais, Western Ghats, India. Biodiversity and Conservation, 8, 1533–1554. doi:10.1023/A:1008940803073.

    Article  Google Scholar 

  • Champion, H. G., & Seth, S. K. (1968). A revised survey of the forest types of India. Delhi: Manager of Publications.

    Google Scholar 

  • Chittibabu, C. V., & Parthasarathy, N. (2000). Attenuated tree species diversity in human-impacted tropical evergreen forest sites at Kolli hills, Eastern Ghats, India. Biodiversity and Conservation, 9, 1493–1519. doi:10.1023/A:1008971015545.

    Article  Google Scholar 

  • Cincotta, R. P., Wisnewski, J., & Engelman, R. (2000). Human population in the biodiversity hotspots. Nature, 404, 990–992. doi:10.1038/35010105.

    Article  CAS  Google Scholar 

  • Colwell, R. K. (2005). EstimateS: Statistical estimation of species richness and shared species from samples. Version7.5. User’s guide and application. Available at: http://purl.oclc.org/estimates.

  • Connell, J. H. (1978). Diversity in tropical rain forests and coral reefs. Science, 199, 1302–1310. doi:10.1126/science.199.4335.1302.

    Article  Google Scholar 

  • Canham, C. D., & Marks, P. L. (1985). The response of woody plants to disturbance: Patterns of establishment and growth. In S. T. A. Pickett, & P. S. White (Eds.), The ecology of natural disturbances and patch dynamics (pp. 197–216). New York: Academic.

    Google Scholar 

  • Curtis, J. T. (1959). The vegetation of Wisconsin: An ordination of plant communities. Wisconsin: University of Wisconsin Press.

    Google Scholar 

  • Das, J. K., & Sarkar, A. (2005). A micro-level study on the use of wood as alternative source of energy. Indian Forester, 131, 1056–1063.

    Google Scholar 

  • Death, R. G., & Winterbourn, M. J. (1995). Diversity patterns in stream benthic invertebrate communities: The influence of habitat. Ecology, 76, 1446–1460. doi:10.2307/1938147.

    Article  Google Scholar 

  • Denslow, J. S., Ellison, A. E., & Sanford, R. E. (1998). Treefall gap size effects on above- and below-ground processes in tropical wet forests. Journal of Ecology, 86, 597–606. doi:10.1046/j.1365-2745.1998.00295.x.

    Article  Google Scholar 

  • Eilu, G., & Obua, J. (2005). Three condition and natural regeneration in disturbed sites of Bwindi impenetrable forest national park, southwestern Uganda. Tropical Ecology, 99, 99–111.

    Google Scholar 

  • Gadgil, M., & Meher-Homji, V. M. (1986). Localities of great significance to conservation of India’s biological diversity. In: The proceedings of Indian academy of sciences (animal science/plant science) (pp. 165–180).

  • Gamble, J. S., & Fischer, C. E. C. (1915–1935). Flora of presidency of Madras, Vol. 1–3. London: Adlard.

    Google Scholar 

  • Gerhardt, K., & Hytteborn, H. (1992). Natural dynamics and regeneration methods in tropical dry forests – an introduction. Journal of Vegetation Science, 3, 361–364. doi:10.2307/3235761.

    Article  Google Scholar 

  • Grime, J. P. (1973). Control of species density in herbaceous vegetation. Journal of Environmental Management, 1, 151–167.

    Google Scholar 

  • Hara, M., Hirata, K., Fujihaxa, M., Oono, K., & Hsich, C. F. (1997). Floristic composition and stand structure of three evergreen broad-leaved forests in Taiwan, with special reference to the relationship between Micro-landform and Vegetation pattern. National Historical Research, 4(Special Issue), 81–112.

    Google Scholar 

  • Henderson, P. A., & Seaby, R. M. H. (2001). Species diversity and richness version 2.65. Lymington, UK: Pisces Conservation.

    Google Scholar 

  • Hooper, E. R., Legendre, P., & Condit, R. (2004). Factors affecting community composition of forest regeneration in deforested, abandoned land in Panama. Ecology, 85, 3313–3326. doi:10.1890/03-0655.

    Article  Google Scholar 

  • Huston, M. A. (1979). A general hypothesis of species diversity. American Naturalist, 113, 81–101. doi:10.1086/283366.

    Article  Google Scholar 

  • Huston, M. A. (1994). Biological diversity. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Hutchinson, G. E. (1953). The concept of pattern in ecology. Proceedings of the Academy of Natural Sciences of Philadelphia, 105, 1–12.

    Google Scholar 

  • Judd, A. G. (1980). The use of cluster analysis in the derivation of geotechnical classifications. Bulletin of the Association of Engineering Geologists, 17, 193–211.

    Google Scholar 

  • Kadavul, K., & Parthasarathy, N. (1999). Plant biodiversity and conservation of tropical semi-evergreen forest in the Shervarayan hills of Eastern Ghats, India. Biodiversity and Conservation, 8, 421–439. doi:10.1023/A:1008899824399.

    Article  Google Scholar 

  • Ludwig, J. A., & Reynolds, J. F. (1988). Statistical ecology. New York: Wiley.

    Google Scholar 

  • McCabe, D. J., & Gotelli, N. J. (2000). Effects of disturbance frequency, intensity, and area on assemblages of stream macroinvertebrates. Oecologia, 124, 270–279. doi:10.1007/s004420000369.

    Article  Google Scholar 

  • McCunne, B., & Mefford, M. J. (1999). Multivariate analysis of ecological data version 4.14. Oregon, USA: MjM Software.

    Google Scholar 

  • McLaren, K. P., & McDonald, M. A. (2003). Coppice regrowth in a disturbed tropical dry limestone forest in Jamaica. Forest Ecology and Management, 180, 99–111. doi:10.1016/S0378-1127(02)00606-0.

    Article  Google Scholar 

  • Menon, S., & Bawa, K. S. (1997). Applications of geographic information systems, remote sensing, and a landscape ecology approach to biodiversity conservation in the Western Ghats. Current Science, 73, 25.

    Google Scholar 

  • Murphy, P. G., & Lugo, A. E. (1986). Ecology of tropical dry forest. Annual Review of Ecology and Systematics, 17, 67–88. doi:10.1146/annurev.es.17.110186.000435.

    Article  Google Scholar 

  • Muthuramkumar, S., Ayyappan, N., Parthasarathy, N., Mudappa, D., Raman, T. R. S., Selwyn, M. A., et al. (2006). Plant community structure in tropical rain forest fragments of the Western Ghats, India. Biotropica, 38, 143–160. doi:10.1111/j.1744-7429.2006.00118.x.

    Article  Google Scholar 

  • Myers, N., Mittermeier, R. A., Mittermeier, C. G., de Fonseca, G. A. B., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403, 853–858. doi:10.1038/35002501.

    Article  CAS  Google Scholar 

  • Nair, S. C. (1991). The southern Western Ghats: A biodiversity conservation plan. New Delhi: INTACH.

    Google Scholar 

  • Narendran, K., Murthy, I. K., Suresh, H. S., Dattaraja, H. S., Ravindranath, N. H., & Sukumar, R. (2001). Non timber forest product extraction, utilization and valuation: A case study from the Nilgiri Biosphere Reserve, Southern India. Economic Botany, 55, 528–538.

    Google Scholar 

  • Newbery, D. M. C., Campbel, E. J. F., Lee, Y. F., Ridsdale, C. E., & Still, M. J. (1992). Primary lowland dipterocarp forest at Danum valley, Sabah, Malaysia: Structure, relative-abundance and family composition. Proceedings of the Transactions of Royal Society, London, 335, 341–356.

    Article  Google Scholar 

  • Olson, D. M., & Dinerstien, E. (1998). The global 200: A representative approach to conserving the earth’s most biologically valuable ecoregions. Conservation Biology, 12, 502–515. doi:10.1046/j.1523-1739.1998.012003502.x.

    Article  Google Scholar 

  • Parthasarathy, N. (2001). Changes in forest composition and structure in three sites of tropical evergreen forest around Sengaltheri, Western Ghats. Current Science, 80, 389–393.

    Google Scholar 

  • Pascal, J. P., Pelissier, R. (1996). Structure and floristic composition of a tropical evergreen forest in southwest India. Journal of Tropical Ecology, 12, 191–214.

    Article  Google Scholar 

  • Pickett, S. T. A., & White, P. S. (Eds.), (1985). The ecology of natural disturbance and patch dynamics. California: Academic.

    Google Scholar 

  • Purushothaman, S. (2004). Land-use strategies, economic options and stakeholder preferences: A study of tribal communities in forest peripheries. Katmandu, Nepal: South Asian Network for Development and Environmental Economics.

    Google Scholar 

  • Sagar, R., & Singh, J. S. (2005). Structure diversity and regeneration of tropical dry deciduous forest of northern India. Biodiversity and Conservation, 14, 935–959. doi:10.1007/s10531-004-0671-6.

    Article  Google Scholar 

  • Sharma, G. P., & Raghubanshi, A. S. (2006). Tree population structure,regeneration and expected future composition at different levels of Lantana camara L. invasion in the Vindhyan tropical dry deciduous forest of India. Lyonia, 11, 27–39.

    Google Scholar 

  • Shi, H., Singh, A., Kant, S., Zhu, Z., & Waller, E. (2005). Integrating habitat status, human population pressure, and protection status into biodiversity conservation priority setting. Conservation Biology, 19, 1273–1285. doi:10.1111/j.1523-1739.2005.00225.x.

    Article  Google Scholar 

  • Slik, J. W. F., Verburg, R. W., & Keßler, P. J. A. (2002). Effects of fire and selective logging on the tree species composition of lowland dipterocarp forest in east Kalimantan, Indonesia. Biodiversity and Conservation, 11, 85–98. doi:10.1023/A:1014036129075.

    Article  Google Scholar 

  • Sousa, W. P. (1984). The role of disturbance in natural communities. Annual Review of Ecology and Systematics, 15, 353–391. doi:10.1146/annurev.es.15.110184.002033.

    Article  Google Scholar 

  • Sukumar, R., Dattaraja, H. S., Suresh, H. S., Radhakrishnan, J., Vasudeva, R., Nirmala, S., et al. (1992). Long-term monitoring of vegetation in a tropical deciduous forest in Mudumalai, Southern India. Current Science, 62, 608–661.

    Google Scholar 

  • Townsend, A. R., Vitousek, P. M., Desmarais, D. J., & Tharpe, A. (1997). Soil carbon pool structure and temperature sensitivity inferred using CO2 and 13CO2 incubation fluxes from five Hawaiian soils. Biogeochemistry, 38, 1–17. doi:10.1023/A:1017942918708.

    Article  CAS  Google Scholar 

  • Watt, A. S. (1947). Pattern and process in the plant community. Journal of Ecology, 35, 1–22. doi:10.2307/2256497.

    Article  Google Scholar 

  • Wilkinson, D. M. (1999). The disturbing history of intermediate disturbance. Oikos, 84, 145–148. doi:10.2307/3546874.

    Article  Google Scholar 

  • Wilson, J. B. (1994). The ‘intermediate disturbance hypothesis’ of species coexistence is based on patch dynamics. New Zealand Journal of Ecology, 18, 176–181.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Anitha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anitha, K., Joseph, S., Ramasamy, E.V. et al. Changes in structural attributes of plant communities along disturbance gradients in a dry deciduous forest of Western Ghats, India. Environ Monit Assess 155, 393–405 (2009). https://doi.org/10.1007/s10661-008-0442-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-008-0442-z

Keywords

Navigation