Skip to main content
Log in

Assessment of MODIS-EVI, MODIS-NDVI and VEGETATION-NDVI Composite Data Using Agricultural Measurements: An Example at Corn Fields in Western Mexico

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Although several types of satellite data provide temporal information of the land use at no cost, digital satellite data applications for agricultural studies are limited compared to applications for forest management. This study assessed the suitability of vegetation indices derived from the TERRA-Moderate Resolution Imaging Spectroradiometer (MODIS) sensor and SPOT-VEGETATION (VGT) sensor for identifying corn growth in western Mexico. Overall, the Normalized Difference Vegetation Index (NDVI) composites from the VGT sensor based on bi-directional compositing method produced vegetation information most closely resembling actual crop conditions. The NDVI composites from the MODIS sensor exhibited saturated signals starting 30 days after planting, but corresponded to green leaf senescence in April. The temporal NDVI composites from the VGT sensor based on the maximum value method had a maximum plateau for 80 days, which masked the important crop transformation from vegetative stage to reproductive stage. The Enhanced Vegetation Index (EVI) composites from the MODIS sensor reached a maximum plateau 40 days earlier than the occurrence of maximum leaf area index (LAI) and maximum intercepted fraction of photosynthetic active radiation (fPAR) derived from in-situ measurements. The results of this study showed that the 250-m resolution MODIS data did not provide more accurate vegetation information for corn growth description than the 500-m and 1000-m resolution MODIS data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asrar, G., Fuchs, M., Kanemasu, E. T. and Hatfield, J. L.: 1984, ‘Estimating absorbed photosynthetically active radiation and leaf area index from spectral reflectance in wheat’, Agronomy Journal 76, 300–306.

    Article  Google Scholar 

  • Báez-González, A. D., Chen, P. Y., Tiscareño-López, M. and Srinivasan, R.: 2002, ‘Using satellite and field data with crop growth modeling to monitor and estimate corn yield in Mexico’, Crop Science 42, 1943–1949.

    Article  Google Scholar 

  • Baret, F. and Guyot, G.: 1991, ‘Potentials and limits of vegetation indices for lai and apar assessment’, Remote Sensing Environment 35, 161–173.

    Article  Google Scholar 

  • Chen, P. Y., Srinivasan, R. and Fedosejevs, G.: 2003a, ‘An automated cloud detection method for daily NOAA-16 AVHRR data over texas and Mexico’, Journal of Geophysical Research-Atmosphere 108(D23), 1–9.

    Article  Google Scholar 

  • Chen, P. Y., Srinivasan, R., Fedosejevs, G., Báez-González, A. D. and Gong, P.: 2002a, ‘Assessment of NDVI composite using merged NOAA-14 and NOAA-15 AVHRR sata’, Geographic Information Sciences 8, 31–38.

    Google Scholar 

  • Chen, P. Y., Srinivasan, R., Fedosejevs, G. and Kiniry, J. R.: 2003b, ‘Evaluating different NDVI composite techniques using NOAA-14 AVHRR data’, International Journal of Remote Sensing 24, 3403–3412.

    Article  Google Scholar 

  • Chen, P. Y., Srinivasan, R., Fedosejevs, G. and Narasimhan, B.: 2002b, ‘An automated cloud detection method for daily NOAA-14 AVHRR Data for texas, USA’, International Journal of Remote Sensing 23, 2939–2950.

    Article  Google Scholar 

  • Choudhury, B. J.: 1987, ‘Relationship between vegetation indices, radiation absorption, and net photosynthesis evaluated by sensitivity analysis’, Remote Sensing of Environment 22, 209-233.

    Article  Google Scholar 

  • Cihlar, J. and Huang, F.: 1994, ‘Effect of atmospheric correction and viewing angle restriction on AVHRR data composites’, Canadian Journal of Remote Sensing 20, 132–137.

    Google Scholar 

  • Dabrowska-Zielinska, K., Kogan, F., Ciolkosz, A., Gruszczynska, M. and Kowalik, W.: 2002, ‘Modeling of crop growth conditions and crop yield in poland using AVHRR-based indices’, International Journal of Remote Sensing 23, 1109–1123.

    Article  Google Scholar 

  • Duchemin, B., Berthelot, B., Dedieu, G., Leroy, M. and Maisongrande, P.: 2002, ‘Normalisation of directional effects in 10-day global syntheses derived from VEGETATION/SPOT: II. validation of an operational method on actual data sets’, Remote Sensing of Environment 81, 101–113.

    Article  Google Scholar 

  • Duchemin, B. and Maisongrande, P.: 2002, ‘Normalisation of directional effects in 10-day global syntheses derived from VEGETATION/SPOT: I. investigation of concepts based on simulation’, Remote Sensing of Environment 81, 90–100.

    Article  Google Scholar 

  • Gallo, K. P., Daughtry, C. S., and Bauer, M. E.: 1985, ‘Spectral estimation of absorbed photosynthetically active radiation in corn canopies’, Remote Sensing of Environment 17, 221–232.

    Article  Google Scholar 

  • Hatfield, J. L., Asrar, G. and Kanemasu, E. T.: 1984, ‘Intercepted photosynthetically active radiation estimated by spectral reflectance’, Remote Sensing of Environment 14, 65–75.

    Article  Google Scholar 

  • Holben, B. N.: 1986, ‘Characteristics of maximum values composite images from temporal AVHRR data’, International Journal of Remote Sensing 7, 1417–1434.

    Google Scholar 

  • Huete, A. R.: 1988, ‘A soil-adjusted vegetation index (SAVI)’, Remote Sensing of Environment 25, 295–309.

    Article  Google Scholar 

  • Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X. and Ferreira, L. G.: 2002, ‘Overview of the radiometric and biophysical performance of the MODIS Vegetation indices’, Remote Sensing of Environment 83, 195–213.

    Article  Google Scholar 

  • Huete, A., Justice, C. and Liu, H.: 1994, ‘Development of vegetation and soil indices for MODIS-EOS’, Remote Sensing of Environment 49, 224–234.

    Article  Google Scholar 

  • Iowa State University of Science and Technology Cooperative Extension Service: 1997, ‘How a corn plant develops’, Special Report No. 48, Ames, Iowa.

  • Justice, C. O., Townshend, J. R. G., Vermote, E. F., Masuoka, E., Wolfe, R. E., Saleous, N., Roy, D. P. and Morisette, J. T.: 2002, ‘An overview of MODIS land data processing and product status’, Remote Sensing of Environment 83, 3–15.

    Article  Google Scholar 

  • Kumar, M. and Monteith, J. L.: 1981, ‘Remote sensing of crop growth’, in: H. Smith (eds), Plants and the Daylight Spectrum, Academic Press, London, England, pp. 133–144.

    Google Scholar 

  • Lobell, D. B., Hicke, J. A., Asner, G. P., Field, C. B., Tucker, C. J. and Loss, S. O.: 2002, ‘Satellite estimates of productivity and light use efficiency in united states agriculture, 1982–1998’, Global Change Biology 8, 722–735.

    Article  Google Scholar 

  • Prince, S. D.: 1991, ‘A model of regional primary production for use with coarse resolution satellite data’, International Journal of Remote Sensing 12, 1313–1330.

    Google Scholar 

  • Qi, J., Chehbouni, A., Huete, A. R., Kerr, Y. H. and Sorooshian, S.: 1994, ‘A modified soil adjusted vegetation index’, Remote Sensing of the Environment 48, 119–126.

    Article  Google Scholar 

  • Rasmussen, M. S.: 1998, ‘Developing simple, operational, consistent NDVI-vegetation models by applying environmental and climatic information. Part II: Crop yield assessment’, International Journal of Remote Sensing 19, 119–139.

    Article  Google Scholar 

  • Ruimy, A., Saugier, B. and Dedieu, G.: 1994, ‘Methodology for the estimation of terrestrial net primary production from remotely sensed data’, Journal of Geophysical Research 99, 5263–5283.

    Article  Google Scholar 

  • Schaaf, C. B., Gao, F., Strahler, A. H., Lucht, W., Li, X., Tsang, T., Strugnell, N. C., Zhang, X., Jin, Y., Muller, J. P., Lewis, P., Barnsley, M., Hobson, P., Disney, M., Roberts, G., Dunderdale, M., Doll, C., D'entremont, R. P., Hu, B., Liang, S., Privette, J. L. and Roy, D.: 2002, ‘First operational brdf, albedo nadir reflectance products from MODIS’, Remote Sensing of Environment 83, 135–148.

    Article  Google Scholar 

  • Trishchenko, A. P., Cihlar, J. and Li, Z.: 2002, ‘Effects of spectral response function on surface reflectance and NDVI measured with moderate resolution satellite sensors’, Remote Sensing of Environment 81, 1–18.

    Article  Google Scholar 

  • Vermote, E. F., El Saleous, N. Z. and Justice, C. O.: 2002, ‘Atmospheric correction of MODIS data in the visible to middle infrared: First results’, Remote Sensing of Environment 83, 97–111.

    Article  Google Scholar 

  • Wiegand, C. L. and Richardson, A. J.: 1990, ‘Use of spectral vegetation indices to infer leaf area, evapotranspiration and yield: II. Results’, Agronomy Journal 82, 630–636.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pei-Yu Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, PY., Fedosejevs, G., Tiscareño-LóPez, M. et al. Assessment of MODIS-EVI, MODIS-NDVI and VEGETATION-NDVI Composite Data Using Agricultural Measurements: An Example at Corn Fields in Western Mexico. Environ Monit Assess 119, 69–82 (2006). https://doi.org/10.1007/s10661-005-9006-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-005-9006-7

Keywords

Navigation