Skip to main content
Log in

Microcanonical Entropy and Mesoscale Dislocation Mechanics and Plasticity

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

A methodology is devised to utilize the statistical mechanical entropy of an isolated, constrained atomistic system to define constitutive response functions for the dissipative driving-force and energetic fields in continuum thermomechanics. A thermodynamic model of dislocation mechanics is discussed as an example. Primary outcomes are constitutive relations for the back-stress tensor and the Cauchy stress tensor in terms of the elastic distortion, mass density, polar dislocation density, and the scalar statistical density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acharya, A.: A model of crystal plasticity based on the theory of continuously distributed dislocations. J. Mech. Phys. Solids 49, 761–784 (2001)

    Article  ADS  MATH  Google Scholar 

  2. Acharya, A.: Constitutive analysis of finite deformation field dislocation mechanics. J. Mech. Phys. Solids 52, 301–316 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Acharya, A.: Jump condition for GND evolution as a constraint on slip transmission at grain boundaries. Philos. Mag. 87, 1349–1369 (2007)

    Article  ADS  Google Scholar 

  4. Acharya, A.: Coarse-graining autonomous ODE systems by inducing a separation of scales: practical strategies and mathematical questions. Math. Mech. Solids 15, 342–352 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Acharya, A., Roy, A.: Size effects and idealized dislocation microstructure at small scales: predictions of a phenomenological model of Mesoscopic Field Dislocation Mechanics: Part I. J. Mech. Phys. Solids 54, 1687–1710 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Acharya, A., Beaudoin, A.J., Miller, R.E.: New perspectives in plasticity theory: dislocation nucleation, waves, and partial continuity of plastic strain rate. Math. Mech. Solids 13, 292–315 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Admal, N.C., Tadmor, E.B.: A unified interpretation of stress in molecular systems. J. Elast., 63–143 (2010)

  8. Artstein, Z., Vigodner, A.: Singularly perturbed ordinary differential equations with dynamic limits. Proc. R. Soc. Edinb., Sect. A, 541–569 (1996)

  9. Berdichevsky, V.L.: Thermodynamics of Chaos and Order. Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 90. Longman, Harlow (1997)

    MATH  Google Scholar 

  10. Coleman, B.D., Gurtin, M.E.: Thermodynamics with internal state variables. J. Chem. Phys. 47, 597–613 (1967)

    Article  ADS  Google Scholar 

  11. Effendiev, Y.R., Truskinovsky, L.: Thermalization of a driven bi-stable FPU chain. Contin. Mech. Thermodyn. 22, 679–698 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  12. Fox, N.: A continuum theory of dislocations for single crystals. IMA J. Appl. Math. 2, 285–298 (1966)

    Article  Google Scholar 

  13. Frenkel, D., Smit, B.: Understanding Molecular Simulation: From Algorithms to Applications. Academic Press, San Diego (2002)

    Google Scholar 

  14. Guruprasad, P.J., Benzerga, A.A.: A phenomenological model of size-dependent hardening in crystal plasticity. Philos. Mag. 88, 3585–3601 (2008)

    Article  ADS  Google Scholar 

  15. Kocks, U.F., Tome, C.N., Wenk, H.R.: Texture and Anisotropy. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  16. Kroner, E.: Continuum theory of defects. In: Physics of Defects, Les Houches Summer School, pp. 217–315. Norht-Holland, Amsterdam (1981)

    Google Scholar 

  17. Kulkarni, Y., Knap, J., Ortiz, M.: A variational approach to coarse graining of equilibrium and non-equilibrium atomistic description at finite temperature. J. Mech. Phys. Solids 56, 1417–1449 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. MacKay, R.S.: Book review of thermodynamics of chaos and order by V.L. Berdichevsky. Bull. Lond. Math. Soc. 31, 508–510 (1999)

    Article  ADS  Google Scholar 

  19. Man, C.-S.: Remarks on global and local versions of the second law of thermodynamics. In: Thermoelastic Problems and the Thermodynamics of Continua. ASME, Applied Mechanics Division, pp. 33–39 (1995)

    Google Scholar 

  20. Mura, T.: Continuous distribution of moving dislocations. Philos. Mag. 8, 843–857 (1963)

    Article  ADS  Google Scholar 

  21. Puri, S., Roy, A., Acharya, A., Dimiduk, D.: Modeling dislocation sources and size effects at initial yield in continuum plasticity. J. Mech. Mater. Struct. 4(9), 1603–1618 (2009)

    Article  Google Scholar 

  22. Puri, S., Acharya, A., Rollett, A.D.: Controlling plastic flow across grain boundaries in a continuum model. Metall. Mater. Trans. A (2010). doi:10.1007/s11661-010-02578

    Google Scholar 

  23. Rice, J.R.: Inelastic constitutive relations for solids: an internal-variable theory and its application to metal plasticity. J. Mech. Phys. Solids 19, 433–455 (1971)

    Article  ADS  MATH  Google Scholar 

  24. Roy, A., Acharya, A.: Size effects and idealized dislocation microstructure at small scales: predictions of a phenomenological model of mesoscopic field dislocation mechanics: Part II. J. Mech. Phys. Solids 54, 1711–1743 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Swendsen, R.H.: Statistical mechanics of colloids and Boltzmann’s definition of the entropy. Am. J. Phys. 74, 187–190 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Tartar, L.: From Hyperbolic Systems to Kinetic Theory: A Personalized Quest. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  27. Tartar, L.: The General Theory of Homogenization: A Personalized Introduction. Springer, Berlin (2009)

    MATH  Google Scholar 

  28. Truesdell, C., Toupin, R.: The classical field theories. In: Flugge, S. (ed.) Encyclopedia of Physics, vol. III/1. Springer, Berlin (1960)

    Google Scholar 

  29. Willis, J.R.: Second-order effects of dislocations in anisotropic crystals. Int. J. Eng. Sci. 5, 171–190 (1967)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Acharya.

Additional information

This paper is dedicated to the memory of Professor Donald E. Carlson, teacher and friend to me. I owe a great debt for all I learned from him, in particular continuum mechanics. Don was a scholar and a gentleman, with a kind heart and a tremendous sense of humor. I miss him.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Acharya, A. Microcanonical Entropy and Mesoscale Dislocation Mechanics and Plasticity. J Elast 104, 23–44 (2011). https://doi.org/10.1007/s10659-011-9328-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-011-9328-3

Keywords

Mathematics Subject Classification (2000)

Navigation