Skip to main content
Log in

RB and Ph resistance genes in potato and tomato minimize risk for oospore production in the presence of mating pairs of Phytophthora infestans

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Late blight caused by the heterothallic oomycete Phytophthora infestans, is a constraint of potato and tomato production worldwide. Currently, pathogen populations within the U.S. are primarily asexual with limited recombination or soil persistent oospores. Both mating types, however, were isolated from Wisconsin during 2009, 2010, and 2013, posing risk for oospores. Late blight resistance genes can be useful in disease reduction against currently predominant U.S. clonal lineages, however, resistance is not complete. To assess disease and oospores with US-22 (A2), US-23 (A1), and US-24 (A1) clonal lineages, fifteen solanaceous hosts with different resistance genetics were investigated. Potato and tomato transformed with the RB gene and tomato ‘Mountain Magic,’ carrying Ph-2 and Ph-3, were the most tolerant to all pathogen lineages with significantly less disease severity (<30%) than the other twelve varieties (40–100% severity). Oospores formed in plant tissues after inoculation with both mating pairs on susceptible and moderately resistant hosts at 12–20 °C, with the greatest number of oospores at 16 °C. The US-24 x US-22 cross produced significantly more oospores than the US-23 x US-22 cross. No oospores were detected in tomato with Ph2 and Ph3, or potato and tomato with RB using whole plant assays. Varieties with these genes could play an important part of an integrated late blight management program by limiting disease and the sexual phase of the pathogen. Deployment of Ph and RB could greatly reduce the risk of oospores and sexual recombination, thereby reducing population variation and development of soilborne P. infestans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andersson, B., Johansson, M., & Jönsson, B. (2003). First report of Solanum physalifolium as a host plant for Phytophthora infestans in Sweden. Plant Disease, 87(12), 1538–1538.

    Article  Google Scholar 

  • AVRDC. (1993). Progress report. Shanhua, Tainan, Taiwan: Asian Vegetable Research and Development Center.

    Google Scholar 

  • Caten, C. E., & Jinks, J. L. (1968). Spontaneous variability of single isolates of Phytophthora infestans. Canadian Journal of Botany, 46, 329–347.

    Article  Google Scholar 

  • Chen, A. L., Liu, C. Y., Chen, C. H., Wang, J. F., Liao, Y. C., Chang, C. H., Tsai, M. H., Hwu, K. K., & Chen, K. Y. (2014). Reassessment of QTLs for late blight resistance in the tomato accession L3708 using a restriction site associated DNA (RAD) linkage map and highly aggressive isolates of Phytophthora infestans. PloS One, 9, e96417.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, C. H., Sheu, Z. M., & Wang, T. C. (2008). Host specificity and tomato-related race composition of Phytophthora infestans isolates in Taiwan during 2004 and 2005. Plant Disease, 92(5), 751–755.

    Article  CAS  Google Scholar 

  • Clement, J. A. J., Magalon, H., Pelle, R., Marquer, B., & Andrivon, D. (2010). Alteration of pathogenicity-linked life-history traits by resistance of its host Solanum tuberosum impacts sexual reproduction of the plant pathogenic oomycete Phytophthora infestans. Journal of Evolutionary Biology, 23(12), 2668–2676.

    Article  CAS  PubMed  Google Scholar 

  • Conover, R., & Walter, J. (1953). The occurrence of a virulent race of Phytophthora infestans on late blight resistant tomato stocks. Phytopathology, 43, 344–345.

    Google Scholar 

  • Cooke, D. E. L., Cano, L. M., Raffaele, S., Bain, R. A., Cooke, L. R., Etherington, G. J., et al. (2012). Genome analyses of an aggressive and invasive lineage of the Irish potato famine pathogen. PLoS Pathogens, 8(10), e1002940.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cooke, L. R., Carlisle, D. J., Wilson, D. G., & Deahl, K. L. (2002). Natural occurrence of Phytophthora infestans on woody nightshade (Solanum dulcamara) in Ireland. Plant Pathology, 51(3), 392–392.

    Article  Google Scholar 

  • Dandurand, L. M., Knudsen, G. R., & Eberlein, C. V. (2006). Susceptibility of five nightshade (Solanum) species to Phytophthora infestans. American Journal of Potato Research, 83(2), 205–210.

    Article  Google Scholar 

  • Danies, G., Small, I. M., Myers, K., Childers, R., & Fry, W. E. (2013). Phenotypic characterization of recent clonal lineages of Phytophthora infestans in the United States. Plant Disease, 97(7), 873–881.

    Article  CAS  Google Scholar 

  • Deahl, K., Goth, R., Young, R., Sinden, S., & Gallegly, M. (1991). Occurrence of the A2 mating type of Phytophthora infestans in potato fields in the United States and Canada. American Journal of Potato Research, 68(11), 717–725.

    Article  Google Scholar 

  • Deahl, K. L., Perez, F., Baker, C. J., Jones, R. W., Cooke, L., & McGrath, M. (2010). Natural occurrence of Phytophthora infestans causing late blight on woody nightshade (Solanum dulcamara) in New York. Plant Disease, 94(8), 1063–1063.

    Article  Google Scholar 

  • Douches, D., Coombs, J., Felcher, K., Kirk, W., Long, C., & Bird, G. (2010). Missaukee: A round white potato variety combining chip-processing with resistance to late blight, Verticillium wilt and golden cyst nematode. American Journal of Potato Research, 87(1), 10–18.

    Article  Google Scholar 

  • Douches, D., Jastrzebski, K., Coombs, J., Kirk, W., Felcher, K., Hammerschmidt, R., et al. (2001). Jacqueline lee: A late-blight-resistant tablestock variety. American Journal of Potato Research, 78(6), 413–419.

    Article  Google Scholar 

  • Drenth, A., Janssen, E. M., & Govers, F. (1995). Formation and survival of oospores of Phytophthora infestans under natural conditions. Plant Pathology, 44(1), 86–94.

    Article  Google Scholar 

  • Edmonds, J.M. (1986). Biosystematics of Solanum sarrachoides Sendtner and S. physalifolium Rusby (S. nitidibaccatum Bitter). Botanical Journal of the Linnean Society, 92(1),1–38.

    Article  Google Scholar 

  • Erwin, D., & Ribeiro, O. (1996). Phytophthora diseases worldwide. St. Paul: APS Press.

    Google Scholar 

  • Flier, W. G., Van Den Bosch, G. B. M., & Turkensteen, L. J. (2003). Epidemiological importance of Solanum sisymbriifolium. S. nigrum and S. dulcamara as alternative hosts for Phytophthora infestans. Plant Pathology, 52(5), 595–603.

    Google Scholar 

  • Foolad, M., Merk, H., & Ashrafi, H. (2008). Genetics, genomics and breeding of late blight and early blight resistance in tomato. Critical Reviews in Plant Sciences, 27, 75–107.

    Article  CAS  Google Scholar 

  • Frost, K. E., Seidl Johnson, A. C., & Gevens, A. J. (2016). Survival of isolates of US-22, US-23, and US-24 clonal lineages of Phytophthora infestans by asexual means in tomato seed at cold temperatures. Plant Disease, 100(1), 180–187.

    Article  CAS  Google Scholar 

  • Fry, W. E. (2008). Phytophthora infestans: The plant (and R gene) destroyer. Molecular Plant Pathology, 9(3), 385–402.

    Article  PubMed  Google Scholar 

  • Fry, W. E., & Goodwin, S. B. (1997). Re-emergence of potato and tomato late blight in the United States. Plant Disease, 81, 1349–1357.

    Article  Google Scholar 

  • Galindo, J. (1960). The nature of sexuality of Phytophthora infestans. Phytopathology, 50, 123–128.

    Google Scholar 

  • Gardner, R. G., & Panthee, D. R. (2012). ‘Mountain Magic’: An early blight and late blight-resistant specialty type F1 hybrid tomato. Hortscience, 47(2), 299–300.

    Google Scholar 

  • Gavino, P. D., Smart, C. D., Sandrock, R. W., Miller, J. S., Hamm, P. B., Lee, T. Y., et al. (2000). Implications of sexual reproduction for Phytophthora infestans in the United States: Generation of an aggressive lineage. Plant Disease, 84(7), 731–735.

    Article  Google Scholar 

  • Gevens, A., & Seidl, A. (2013). Occurrence and character of late blight in Wisconsin and the U.S. 2009-2012. Paper presented at the Wisconsin crop management conference.

  • Golas, T. M., Sikkema, A., Gros, J., Feron, R. M. C., van den Berg, R. G., van der Weerden, G. M., et al. (2010). Identification of a resistance gene Rpi-dlc1 to Phytophthora infestans in European accessions of Solanum dulcamara. Theoretical and Applied Genetics, 120(4), 797–808.

    Article  PubMed  Google Scholar 

  • Goodwin, S. B., Cohen, B. A., Deahl, K. L., & Fry, W. E. (1994). Migration from northern Mexico as the probable cause of recent genetic changes in populations of Phytophthora infestans in the United States and Canada. Phytopathology, 84(6), 553–558.

    Article  Google Scholar 

  • Goodwin, S., Sujkowski, L., & Fry, W. (1995a). Rapid evolution of pathogenicity within clonal lineages of the potato late blight disease fungus. Phytopathology, 85, 669–676.

    Article  Google Scholar 

  • Goodwin, S. B., Sujkowski, L. S., Dyer, A. T., & Fry, B. A. (1995b). Direct detection of gene flow and probable sexual reproduction of Phytophthora infestans in northern North America. Phytopathology, 85, 473–479.

    Article  Google Scholar 

  • Goth, R. W. (1981). An efficient technique for prolonged storage of Phytophthora infestans. American Potato Journal, 58(5), 257–260.

    Article  Google Scholar 

  • Gronberg, L., Andersson, B., Yuen, J. (2012). Can weed hosts increase aggressiveness of Phytophthora infestans on potato? Phytopathology, 102, 429–433.

  • Haas, B. J., Kamoun, S., Zody, M. C., Jiang, R. H. Y., Handsaker, R. E., Cano, L. M., et al. (2009). Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans. Nature, 461(7262), 393–398.

    Article  CAS  PubMed  Google Scholar 

  • Halterman, D., Chen, Y., Sopee, J., Berduo-Sandoval, J., & Sánchez-Pérez, A. (2010). Competition between Phytophthora infestans effectors leads to increased aggressiveness on plants containing broad-spectrum late blight resistance. PloS One, 5(5), e10536.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hammi, A., Bennani, A., El Ismaili, A., Msatef, Y., & Serrhini, M. N. (2001). Production and germination of oospores of Phytophthora infestans (Mont.) de Bary in Morocco. European Journal of Plant Pathology, 107(5), 553–556.

    Article  Google Scholar 

  • Hansen, Z. R., Small, I.M., Mutschler, M., Fry, W.E., Smart, C.D. (2014). Differential Susceptibility of 39 Tomato Varieties to Clonal Lineage US-23. Plant Disease, 98(12), 1666–1670.

    Article  Google Scholar 

  • Hodgson, W., & Grainger, P. (1964). Culture of Phytophthora infestans on artificial media prepared from rye seeds. Canadian Journal of Plant Science, 44, 583.

    Article  Google Scholar 

  • Hu, C.-H., Perez, F. G., Donahoo, R., McLeod, A., Myers, K., Ivors, K., et al. (2012). Recent genotypes of Phytophthora infestans in the eastern United States reveal clonal populations and reappearance of mefenoxam sensitivity. Plant Disease, 96(9), 1323–1330.

    Article  Google Scholar 

  • Johnson, D. A., Cummings, T. F., & Hamm, P. B. (2000). Cost of fungicides used to manage potato late blight in the Columbia Basin: 1996 to 1998. Plant Disease, 84(4), 399–402.

    Article  Google Scholar 

  • Johnson, D. A., Cummings, T. F., Hamm, P. B., Rowe, R. C., Miller, J. S., Thornton, R. E., et al. (1997). Potato late blight in the Columbia Basin: An economic analysis of the 1995 epidemic. Plant Disease, 81(1), 103–106.

    Article  Google Scholar 

  • Judelson, H. S. (1997). Expression and inheritance of sexual preference and selfing potential in Phytophthora infestans. Fungal Genetics and Biology, 21(2), 188–197.

    Article  Google Scholar 

  • Kalischuk, M. L., Al-Mughrabi, K. I., Peters, R. D., Howard, R. J., Platt, H. W., & Kawchuk, L. M. (2012). Genetic composition of Phytophthora infestans in Canada reveals migration and increased diversity. Plant Disease, 96(12), 1729–1735.

    Article  CAS  Google Scholar 

  • Kim, M., & Mutschler, M. A. (2005). Transfer to processing tomato and characterization of late blight resistance derived from Solanum pimpinellifolium L. L3708. Journal of the American Society of Horticulture Science., 130(6), 877–884.

    Google Scholar 

  • Kim, M., & Mutschler, M. A. (2006). Characterization of late blight resistance derived from Solanum pimpinellifolium L3708 against multiple isolates of the pathogen Phytophthora infestans. Journal of the American Society of Horticulture Science., 131(5), 637–645.

    Google Scholar 

  • Kim, M.-H., Park, S.-C., Kim, J.-Y., Lee, S. Y., Lim, H.-T., Cheong, H., et al. (2006). Purification and characterization of a heat-stable serine protease inhibitor from tubers of new potato variety "golden valley". Biochemical and Biophysical Research Communications, 346, 681–686.

    Article  CAS  PubMed  Google Scholar 

  • Ko, W. (1988). Hormonal heterothallism and homothallism in Phytophthora. Annual Review of Phytopathology, 26(1), 57–73.

    Article  Google Scholar 

  • Lamour, K. H., & Hausbeck, M. K. (2001). Investigating the spatiotemporal genetic structure of Phytophthora capsici in Michigan. Phytopathology, 91(10), 973–980.

    Article  CAS  PubMed  Google Scholar 

  • Lees, A. K., Stewart, J. A., Lynott, J. S., Carnegie, S. F., Campbell, H., & Roberts, A. M. I. (2012). The Effect of a dominant Phytophthora infestans genotype (13_A2) in great Britain on host resistance to foliar late blight in commercial potato cultivars. Potato Research, 55(2), 125–134.

    Article  Google Scholar 

  • Legard, T., Lee, Y., & Fry, W. E. (1995). Pathogenic specialization in Phytophthora infestans: Aggressiveness on tomato. Phytopathology, 85, 1356–1361.

    Article  Google Scholar 

  • Malcolmson, J. F. (1969). Factors involved in resistance to blight (Phytophthora infestans (Mont.) de Bary) in potatoes and assessment of resistance using detached leaves. Annals of Applied Biology, 64(3), 461–468.

    Article  Google Scholar 

  • Malcolmson, J. F., & Black, W. (1966). New R genes in Solanum demissum Lindl. And their complementary races of Phytophthora infestans (Mont.) de Bary. Euphytica, 15, 199–203.

    Article  Google Scholar 

  • Mizubuti, E. S. G., & Fry, W. E. (1998). Temperature effects on developmental stages of isolates from three clonal lineages of Phytophthora infestans. Phytopathology, 88(8), 837–843.

    Article  CAS  PubMed  Google Scholar 

  • Moreau, P., Thoquet, P., Olivier, J., Laterrot, H., & Grimsley, N. (1998). Genetic mapping of Ph-2, a single locus controlling partial resistance to Phytophthora infestans in tomato. Molecular Plant-Microbe Interactions, 11(4), 259–269.

    Article  CAS  Google Scholar 

  • Novy, R., Love, S., Corsini, D., Pavek, J., Whitworth, J., Mosley, A., et al. (2006). Defender: A high-yielding, processing potato cultivar with foliar and tuber resistance to late blight. American Journal of Potato Research, 83(1), 9–19.

    Article  Google Scholar 

  • Novy, R. G., Whitworth, J. L., Stark, J. C., Charlton, B. A., Yilma, S., Knowles, N. R., et al. (2012). Palisade Russet: A late blight resistant potato cultivar having a low incidence of sugar ends and high specific gravity. American Journal of Potato Research, 89(2), 89–101.

    Article  Google Scholar 

  • Nowakowska, M., Nowicki, M., Kłosinska, U., Maciorowski, R., & Kozik, E. U. (2014). Appraisal of artificial screening techniques of tomato to accurately reflect field performance of the late blight resistance. PloS One, 9, e109328.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nowicki, M., Foolad, M. R., Nowakowska, M., & Kozik, E. U. (2012). Potato and tomato late blight caused by Phytophthora infestans: An overview of pathology and resistance breeding. Plant Disease, 96(1), 4–17.

    Article  Google Scholar 

  • Olanya, O.M., Lambert, D.H., Plant, A.B. (2005) Occurrence and cross-infection of on hairy nightshade (Solanum sarrachoides) and potato (Solanum tuberosum) in Maine. Canadian Journal of Plant Pathology, 27(3), 458–460.

    Article  Google Scholar 

  • Ristaino, J. B. (2010). Potato and tomato late blight: Genealogical history, multiple source and migration events. Phytopathology, 100, S161.

    Google Scholar 

  • Ross, H. (1986). Potato breeding - problems and perspectives. Journal of Plant Breeding, 13, supplement 13.

  • Seidl, A. C., & Gevens, A. J. (2013). Characterization and distribution of three new clonal lineages of Phytophthora infestans causing late blight in Wisconsin from 2009 to 2012. American Journal of Potato Research, 90(6), 551–560.

    Article  Google Scholar 

  • Seidl Johnson, A. C., Frost, K. E., Rouse, D. I., & Gevens, A. J. (2015). Effect of temperature on growth and sporulation of US-22, US-23, and US-24 clonal lineages of Phytophthora infestans and implications for late blight epidemiology. Phytopathology, 105(4), 449–459.

    Article  PubMed  Google Scholar 

  • Song, J., Bradeen, J. M., Naess, S. K., Raasch, J. A., Wielgus, S. M., Haberlach, G. T., et al. (2003). Gene RB cloned from Solanum bulbocastanum confers broad spectrum resistance to potato late blight. Proceedings of the National Academy of Sciences USA, 100(16), 9128–9133.

    Article  CAS  Google Scholar 

  • Stewart, H. E. (1990). Effect of plant age and inoculum concentration on expression of major gene resistance to Phytophthora infestans in detached potato leaflets. Mycological Research, 94(6), 823–826.

    Article  Google Scholar 

  • Thurston, H. (1957). The culture of Phytophthora infestans. Phytopathology, 47, 186.

    Google Scholar 

  • Turkensteen, L. J., Flier, W. G., Wanningen, R., & Mulder, A. (2000). Production, survival and infectivity of oospores of Phytophthora infestans. Plant Pathology, 49(6), 688–696.

    Article  Google Scholar 

  • Umaerus, V., & Umaerus, M. (1994). Inheritance of resistance to late blight. In J. E. Bradshaw & G. R. Mackay (Eds.), Potato Genetics (pp. 365–401). Wallingford: CAB International.

    Google Scholar 

  • van der Vossen, E., Sikkema, A., Hekkert, B. T. L., Gros, J., Stevens, P., Muskens, M., et al. (2003). An ancient R gene from the wild potato species Solanum bulbocastanum confers broad-spectrum resistance to Phytophthora infestans in cultivated potato and tomato. Plant Journal, 36(6), 867–882.

    Article  PubMed  Google Scholar 

  • Wastie, R. L. (1991). Breeding for resistance, Phytophthora infestans: The cause of late blight of potato. Advances in Plant Pathology, eds Ingram D.S., Williams P.H. (Academic Press, San Diego), 7, 193224.

  • Whitworth, J., Novy, R., Stark, J., Pavek, J., Corsini, D., Love, S., et al. (2010). Yukon gem: A yellow-fleshed potato cultivar suitable for fresh-pack and processing with resistances to PVYO and late blight. American Journal of Potato Research, 87(4), 327–336.

    Article  Google Scholar 

  • Zhang, C., Liu, L., Wang, X., Vossen, J., Li, G., Li, Tao., Zheng, Z., Gao, J., Guo, Y., Visser, R.G.F, Li, J., Bai, Y., Du, Y. (2014). The Ph-3 gene from Solanum pimpinellifolium encodes CC-NBS-LRR protein conferring resistance to Phytophthora infestans. Theoretical and Applied Genetics, 127(6), 1353–1364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by United States Department of Agriculture, United States Potato Board Funds, and a Fulbright U.S. Student Scholarship awarded to Amilcar Sanchez-Perez. We would like to thank Dr. Anna Seidl Johnson for sharing her nightshade weed collection for use in our experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amanda J. Gevens.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanchez-Perez, A., Halterman, D., Jordan, S. et al. RB and Ph resistance genes in potato and tomato minimize risk for oospore production in the presence of mating pairs of Phytophthora infestans . Eur J Plant Pathol 149, 853–864 (2017). https://doi.org/10.1007/s10658-017-1233-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-017-1233-6

Keywords

Navigation