Skip to main content
Log in

Development of specific primers based on the genomes of Penicillium spp. for rapid detection of Penicillium digitatum among fungal isolates in citrus

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Specific primers targeting Penicillium digitatum were developed based on fungal genes RPB1 and cmd, which are conserved among the genomes of Penicillium spp. The specific primers were designed based on the mutational sites in the homologous regions of the conserved genes. The results indicated that primer pairs RPB1–1 and cmd-3 were specific enough to distinguish Penicillium digitatum (N1) from Penicillium chrysogenum (Q), Penicillium italicum (A10) and Penicillium expansum (L) when the DNA samples were diluted 100-fold. To further verify the effectiveness and specificity of the two primer pairs RPB1–1 and cmd-3, 38 strains of fungal isolates from sources related to citrus were detected using both primer pairs, and 14 candidate P. digitatum strains were identified. Then, the fourteen candidate P. digitatum strains were further identified as P. digitatum by morphological and molecular methods, which confirmed the detection accuracy and reliability of the specific primer pairs RPB1–1 and cmd-3 as molecular markers of P. digitatum. This work may significantly facilitate the rapid identification of P. digitatum in the citrus industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Amselem, J., Cuomo, C. A., Van Kan, J. A., Viaud, M., Benito, E. P., Couloux, A., Coutinho, P. M., de Vries, R. P., Dyer, P. S., Fillinger, S., et al. (2011). Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea. PLoS Genetics, 7, e1002230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baayen, R., Bonants, P., Verkley, G., Carroll, G., Van Der Aa, H., De Weerdt, M., Van Brouwershaven, I., Schutte, G., Maccheroni Jr., W., & de Blanco, C. G. (2002). Nonpathogenic isolates of the citrus black spot fungus, Guignardia citricarpa, identified as a cosmopolitan endophyte of woody plants, G. mangiferae (Phyllosticta capitalensis). Phytopathology, 92, 464–477.

    Article  CAS  PubMed  Google Scholar 

  • Chuang, L. Y., Cheng, Y. H., & Yang, C. H. (2013). Specific primer design for the polymerase chain reaction. Biotechnology Letters, 35, 1541–1549.

    Article  CAS  PubMed  Google Scholar 

  • Davolos, D., Pietrangeli, B., Persiani, A. M., & Maggi, O. (2012). Penicillium simile sp. nov. revealed by morphological and phylogenetic analysis. International Journal of Systematic and Evolutionary Microbiology, 62, 451–458.

    Article  PubMed  Google Scholar 

  • Erasmus, A., Lennox, C. L., Korsten, L., Lesar, K., & Fourie, P. H. (2015). Imazalil resistance in Penicillium digitatum and P. italicum causing citrus postharvest green and blue mould: impact and options. Postharvest Biology and Technology, 107, 66–76.

    Article  CAS  Google Scholar 

  • Fox, G. E., Wisotzkey, J. D., & Jurtshuk, J. R. (1992). How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. International Journal of Systematic and Evolutionary Microbiology, 42, 166–170.

    CAS  Google Scholar 

  • Groebe, D. R., & Uhlenbeck, O. C. (1988). Characterization of RNA hairpin loop stability. Nucleic Acids Research, 16, 11725–11735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hosoya, K., Nakayama, M., Tomiyama, D., Matsuzawa, T., Imanishi, Y., Ueda, S., & Yaguchi, T. (2014). Risk analysis and rapid detection of the genus Thermoascus, food spoilage fungi. Food Control, 41, 7–12.

    Article  CAS  Google Scholar 

  • Houbraken, J., Frisvad, J. C., Seifert, K., Overy, D. P., Tuthill, D., Valdez, J., & Samson, R. (2012). New penicillin-producing Penicillium species and an overview of section Chrysogena. Persoonia-Molecular Phylogeny and Evolution of Fungi, 29, 78–100.

    Article  CAS  PubMed Central  Google Scholar 

  • Islam, M. S., Haque, M. S., Islam, M. M., Emdad, E. M., Halim, A., Hossen, Q. M. M., Hossain, M. Z., Ahmed, B., Rahim, S., & Rahman, M. S. (2012). Tools to kill: genome of one of the most destructive plant pathogenic fungi Macrophomina phaseolina. BMC Genomics, 13, 1.

    Article  Google Scholar 

  • Jackson, C. R., Fedorka-Cray, P. J., & Barrett, J. B. (2004). Use of a genus-and species-specific multiplex PCR for identification of enterococci. Journal of Clinical Microbiology, 42, 3558–3565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jarman, S., Deagle, B., & Gales, N. (2004). Group-specific polymerase chain reaction for DNA-based analysis of species diversity and identity in dietary samples. Molecular Ecology, 13, 1313–1322.

    Article  CAS  PubMed  Google Scholar 

  • Kepler, R. M., Humber, R. A., Bischoff, J. F., & Rehner, S. A. (2014). Clarification of generic and species boundaries for Metarhizium and related fungi through multigene phylogenetics. Mycologia, 106, 811–829.

    Article  PubMed  Google Scholar 

  • Li, B. Q., Zong, Y. Y., Du, Z. L., Chen, Y., Zhang, Z. Q., Qin, G. Z., Zhao, W. M., & Tian, S. P. (2015). Genomic characterization reveals insights into patulin biosynthesis and pathogenicity in Penicillium species. Molecular Plant-Microbe Interactions, 28, 635–647.

    Article  CAS  PubMed  Google Scholar 

  • Marcet-Houben, M., Ballester, A. R., de la Fuente, B., Harries, E., Marcos, J. F., González-Candelas, L., & Gabaldón, T. (2012). Genome sequence of the necrotrophic fungus Penicillium digitatum, the main postharvest pathogen of citrus. BMC Genomics, 13, 1.

    Article  Google Scholar 

  • Martell, M., Gómez, J., Esteban, J. I., Sauleda, S., Quer, J., Cabot, B., Esteban, R., & Guardia, J. (1999). High-throughput real-time reverse transcription-PCR quantitation of hepatitis C virus RNA. Journal of Clinical Microbiology, 37, 327–332.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martineau, F., Picard, F. J., Ke, D., Paradis, S., Roy, P. H., Ouellette, M., & Bergeron, M. G. (2001). Development of a PCR assay for identification of staphylococci at genus and species levels. Journal of Clinical Microbiology, 39, 2541–2547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Massi, F. P., Vieira, M. L. C., Sartori, D., Penha, R. E. S., de Freitas Munhoz, C., Ferreira, J. M., Iamanaka, B. T., Taniwaki, M. H., Frisvad, J. C., & Fungaro, M. H. P. (2014). Brazil nuts are subject to infection with B and G aflatoxin-producing fungus, Aspergillus pseudonomius. International Journal of Food Microbiology, 186, 14–21.

    Article  CAS  PubMed  Google Scholar 

  • Navajas, M., Lagnel, J., Fauvel, G., & De Moraes, G. (1999). Sequence variation of ribosomal internal transcribed spacers (ITS) in commercially important Phytoseiidae mites. Experimental & Applied Acarology, 23, 851–859.

    Article  CAS  Google Scholar 

  • On, S. L., & Jordan, P. J. (2003). Evaluation of 11 PCR assays for species-level identification of Campylobacter jejuni and Campylobacter coli. Journal of Clinical Microbiology, 41, 330–336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rikkinen, J. (2013). Molecular studies on cyanobacterial diversity in lichen symbioses. MycoKeys, 6, 3.

    Article  Google Scholar 

  • Rong, C., Ma, Y., Wang, S., Liu, Y., Wang, L., Ma, K., Dou, S., Yang, Y., & Xu, F. (2016). Penicillium chroogomphum, a new species in Penicillium section Ramosa isolated from fruiting bodies of Chroogomphus rutilus in China. Mycoscience, 57, 79–84.

    Article  CAS  Google Scholar 

  • Saporito, S. M., & Sypherd, P. S. (1991). The isolation and characterization of a calmodulin-encoding gene (CMD1) from the dimorphic fungus Candida albicans. Gene, 106, 43–49.

    Article  CAS  PubMed  Google Scholar 

  • Schleifer, K. H., Ehrmann, M., Beimfohr, C., Brockmann, E., Ludwig, W., & Amann, R. (1995). Application of molecular methods for the classification and identification of lactic acid bacteria. International Dairy Journal, 5, 1081–1094.

    Article  CAS  Google Scholar 

  • Schoch, C. L., Seifert, K. A., Huhndorf, S., Robert, V., Spouge, J. L., Levesque, C. A., Chen, W., Bolchacova, E., Voigt, K., & Crous, P. W. (2012). Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences, 109, 6241–6246.

    Article  CAS  Google Scholar 

  • Song, Y. L., Kato, N., Liu, C. X., Matsumiya, Y., Kato, H., & Watanabe, K. (2000). Rapid identification of 11 human intestinal Lactobacillus species by multiplex PCR assays using group-and species-specific primers derived from the 16S–23S rRNA intergenic spacer region and its flanking 23S rRNA. FEMS Microbiology Letters, 187, 167–173.

    CAS  PubMed  Google Scholar 

  • Specht, T., Dahlmann, T. A., Zadra, I., Kürnsteiner, H., & Kück, U. (2014). Complete sequencing and chromosome-scale genome assembly of the industrial progenitor strain P2niaD18 from the penicillin producer Penicillium chrysogenum. Genome Announcements, 2, e00577–e00514.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stringari, D., Glienke, C., Christo, D. d., Maccheroni Jr., W., & Azevedo, J. L. d. (2009). High molecular diversity of the fungus Guignardia citricarpa and Guignardia mangiferae and new primers for the diagnosis of the citrus black spot. Brazilian Archives of Biology and Technology, 52, 1063–1073.

    Article  CAS  Google Scholar 

  • Tournas, V., & Katsoudas, E. (2005). Mould and yeast flora in fresh berries, grapes and citrus fruits. International Journal of Food Microbiology, 105, 11–17.

    Article  CAS  PubMed  Google Scholar 

  • Wallinger, C., Juen, A., Staudacher, K., Schallhart, N., Mitterrutzner, E., Steiner, E. M., Thalinger, B., & Traugott, M. (2012). Rapid plant identification using species-and group-specific primers targeting chloroplast DNA. PloS One, 7, 29473.

    Article  Google Scholar 

  • Xu, X., Chen, J., Xu, H., & Li, D. (2014). Role of a major facilitator superfamily transporter in adaptation capacity of Penicillium funiculosum under extreme acidic stress. Fungal Genetics and Biology, 69, 75–83.

    Article  CAS  PubMed  Google Scholar 

  • Ye, J., Coulouris, G., Zaretskaya, I., Cutcutache, I., Rozen, S., & Madden, T. L. (2012). Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics, 13, 1.

    Article  Google Scholar 

  • Zhu, P., Wu, L., Liu, L., Huang, L., Wang, Y., Tang, W., & Xu, L. (2013). Fusarium asiaticum: an emerging pathogen jeopardizing postharvest asparagus spears. Journal of Phytopathology, 161, 696–703.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Basic Research Program of China (973 program; no: 2013CB127100), the Fundamental Research Funds for the Central Universities (Program no. 2662016PY114) and the National Natural Science Foundation of China (Grant no. 31672205).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao-an Long.

Electronic supplementary material

Fig. S1

Examples of the primer pairs without P. digitatum-specificity. (DOCX 65 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, K., Tian, Z., Wang, L. et al. Development of specific primers based on the genomes of Penicillium spp. for rapid detection of Penicillium digitatum among fungal isolates in citrus. Eur J Plant Pathol 149, 201–209 (2017). https://doi.org/10.1007/s10658-017-1154-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-017-1154-4

Keywords

Navigation