Skip to main content
Log in

Baseline sensitivity and control efficacy of antibiosis fungicide tetramycin against Botrytis cinerea

European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Gray mold is a common disease of many crops worldwide. Tetramycin is a broad-spectrum biopesticide that may control gray mold disease. In the present study, in vitro biological activity of tetramycin was measured in three development stages of Botrytis cinerea, and the baseline sensitivity of B. cinerea to tetramycin was characterized with a set of 165 isolates that were obtained from different geographical regions in Shandong Province, China. Tetramycin’s protective and curative activity against the fungal pathogen was determined on strawberry fruit in laboratory trials, and the efficacy of tetramycin was also determined in field conditions. Spore germination was found to be the most sensitive growth stage that was inhibited by tetramycin, whereas the mycelial growth was the least sensitive growth stage. The baseline sensitivities showed that the frequency distributions of tetramycin were unimodal curves, with mean EC50 values of 0.35 ± 0.20 and 0.020 ± 0.009 μg mL−1 for the inhibition of mycelial growth and spore germination, respectively. Tetramycin had no cross-resistance with other fungicides tested, including carbendazim, iprodione, diethofencarb, pyrimethanil, pyrisoxazole and boscalid. In field trials performed in Tai’an city, Shandong province in 2014 and 2015, tetramycin was used at a concentration of 60 g a.i. ha−1, provided gray mold with an efficacy ranging from 70.73 % to 78.44 %, with no significant difference with other fungicide treatments. These results showed that tetramycin may serve as an alternative fungicide for the control of gray mold in strawberry fruits and cucumber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Ajouz, S., Nicot, P. C., & Bardin, M. (2010). Adaptation to pyrrolnitrin in Botrytis cinerea and cost of resistance. Plant Pathology, 59, 556–566.

    Article  CAS  Google Scholar 

  • Ajouz, S., Walker, A. S., Fabre, F., Leroux, P., Nicot, P. C., & Bardin, M. (2011). Variability of Botrytis cinerea sensitivity to pyrrolnitrin, an antibiotic produced by biological control agents. BioControl, 56, 353–363.

    Article  CAS  Google Scholar 

  • Amiri, A., Heath, S. M., & Peres, N. A. (2013). Phenotypic characterization of multifungicide resistance in Botrytis cinerea isolates from strawberry fields in florida. Plant Disease, 97, 393–401.

    Article  Google Scholar 

  • Bardas, G. A., Veloukas, T., Koutita, O., & Karaoglanidis, G. S. (2010). Multiple resistance of Botrytis cinerea from kiwifruit to SDHIs, QoIs and fungicides of other chemical groups. Pest Management Science, 66, 967–973.

    Article  CAS  PubMed  Google Scholar 

  • Bolard, J. (1986). How do the polyene macrolide antibiotics affect the cellular membrane properties?. Biochimica et Biophysica Acta (BBA)-Reviews on. Biomembranes, 864, 257–304.

    CAS  Google Scholar 

  • Copping, L. G., & Menn, J. J. (2000). Biopesticides: a review of their action, applications and efficacy. Pest Management Science, 56, 651–676.

    Article  CAS  Google Scholar 

  • Elad, Y., Yunis, H., & Katan, T. (1992). Multiple fungicide resistance to benzimidazoles, dicarboximides and diethofencarb in field isolates of Botrytis cinerea in Israel. Plant Pathology, 41, 41–46.

    Article  CAS  Google Scholar 

  • Elad, Y., Williamson, B., Tudzynski, P., & Delen, N. (2004). Botrytis spp. and diseases they cause in agricultural systems - an introduction. In Botrytis: Biology, Pathology & Control, (pp. 1–8). Springer Netherlands.

  • Fernández-Ortuño, D., Chen, F., & Schnabel, G. (2012). Resistance to pyraclostrobin and boscalid in Botrytis cinerea isolates from strawberry fields in the carolinas. Plant Disease, 96, 1198–1203.

    Article  Google Scholar 

  • Hammer, P. E., Evensen, K. B., & Janisiewicz, W. J. (1993). Postharvest control of Botrytis cinerea on cut rose flowers with pyrrolnitrin. Plant Disease, 77, 283–286.

    Article  CAS  Google Scholar 

  • Hammond, S. M. (1977). Biological activity of polyene antibiotics. Progress in Medicinal. Chemistry, 14, 105–179.

    Article  CAS  PubMed  Google Scholar 

  • Hilber, U. W., & Schüepp, H. (1996). A reliable method for testing the sensitivity of Botryotinia fuckeliana to anilinopyrimidines in vitro. Pesticide Science, 47(3), 241–247.

    Article  CAS  Google Scholar 

  • Janisiewicz, W. J., & Korsten, L. (2002). Biological control of postharvest diseases of fruits. Annual Review of Phytopathology, 40, 411–441.

    Article  CAS  PubMed  Google Scholar 

  • Jarvis, W. R. (1977). Botryotinia and Botrytis species: taxonomy, physiology and pathogenicity. A guide to the literature, Monograph No. 15. Ottawa: Canada Department of Agriculture.

    Google Scholar 

  • Leroch, M., Kretschmer, M., & Hahn, M. (2011). Fungicide resistance phenotypes of Botrytis cinerea isolates from commercial vineyards in South West Germany. Journal of Phytopathology, 159, 63–65.

    Article  CAS  Google Scholar 

  • Leroux, P. (2007). Chemical control of Botrytis and its resistance to chemical fungicides. Botrytis: Biology, Pathology & Control, 195–222.

  • Li, B. J., & Zhu, G. R. (1999). Relationship of dipping flower with growing regulators and occurrence of grey mould in tomato fruits. Scientia Agricultura Sinica, 01, 108–109.

    Google Scholar 

  • Li, L., Chen, F., Wang, Z. X., Han, X. J., Wu, H. Y., Huan, M. H., Guan, Y. L., & Guo, L. L. (2010). The manufacturing method and application of biological pesticide – Wuningmycin, CN Patent 200810012503.5.

  • Li, H., Liu, J. B., Wang, T. J., Jiang, H., Zhang, R. B., & Guan, W. J. (2014a). Research progress of ATP-binding cassette transporters in polyene antibiotic biosynthesis gene cluster. Microbiology China, 05, 950–958.

    Google Scholar 

  • Li, S., Hou, Y., Peng, D., Meng, L., Wang, J., Zhou, M., & Chen, C. (2014b). Baseline sensitivity and control efficacy of flutolanil in Rhizoctonia solani. Australasian Plant Pathology, 43, 313–320.

    Article  CAS  Google Scholar 

  • Ling, Y. (2009). The application of new fungicide of tetramycin. Pesticide Market News,17.

  • Ma, Z., & Michailides, T. J. (2005). Advances in understanding molecular mechanisms of fungicide resistance and molecular detection of resistant genotypes in phytopathogenic fungi. Crop Protection, 24, 853–863.

    Article  CAS  Google Scholar 

  • Ma, Z. H., Morgan, D. P., Felts, D., & Michailides, T. J. (2002). Sensitivity of Botryosphaeria dothidea from California pistachio to tebuconazole. Crop Protection, 21, 829–835.

    Article  CAS  Google Scholar 

  • Mamiev, M., Korolev, N., & Elad, Y. (2013). Resistance to polyoxin AL and other fungicides in Botrytis cinerea collected from sweet basil crops in Israel. European Journal of Plant Pathology, 137, 79–91.

    Article  CAS  Google Scholar 

  • Myresiotis, C. K., Karaoglanidis, G. S., & Tzavella-Klonari, K. (2007). Resistance of Botrytis cinerea isolates from vegetable crops to annilinopyrimidine, phenylpyrrole, hydroxyanilide, benzimidazole, and dicarboximide fungicides. Plant Disease, 91, 407–413.

    Article  CAS  Google Scholar 

  • O’Neill, T. M., Shtienberg, D., & Elad, Y. (1997). Effect of some host and microclimate factors on infection of tomato stems by Botrytis cinerea. Plant Disease, 81, 36–40.

    Article  Google Scholar 

  • Ren, J., Cui, Y., Zhang, F., Cui, H., Ni, X., Chen, F., Li, L., & Xia, H. (2014). Enhancement of nystatin production by redirecting precursor fluxes after disruption of the tetramycin gene from Streptomyces ahygroscopicus. Microbiological Research, 169, 602–608.

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez, A., Acosta, A., & Rodríguez, C. (2014). Fungicide resistance of Botrytis cinerea in tomato greenhouses in the Canary Islands and effectiveness of non-chemical treatments against gray mold. World Journal of Microbiology and Biotechnology, 30, 2397–2406

    Article  PubMed  Google Scholar 

  • Russel, P. E. (2004). Sensitivity baselines in fungicide resistance research and management. FRAC Monograph No. 3, FRAC, Brussels, Belgium. http://www.frac.info/publication/anhang/monograph3.pdf. Accessed 8 March 2014.

  • Sun, H. Y., Wang, H. C., Chen, Y., Li, H. X., Chen, C. J., & Zhou, M. G. (2010). Multiple resistance of Botrytis cinerea from vegetable crops to carbendazim, diethofencarb, procymidone, and pyrimethanil in China. Plant Disease, 94, 551–556.

    Article  CAS  Google Scholar 

  • Sun, Y., Zeng, F., Zhang, W., & Qiao, J. (2012). Structure-based phylogeny of polyene macrolide antibiotic glycosyltransferases. Gene, 499, 288–296.

    Article  CAS  PubMed  Google Scholar 

  • Veloukas, T., & Karaoglanidis, G. S. (2012). Biological activity of the succinate dehydrogenase inhibitor fluopyram against Botrytis cinerea and fungal baseline sensitivity. Pest Management Science, 68, 858–864.

    Article  CAS  PubMed  Google Scholar 

  • Weber, R. W. S. (2011). Resistance of Botrytis cinerea to multiple fungicides in northern german small-fruit production. Plant Disease, 95, 1263–1269.

    Article  CAS  Google Scholar 

  • Williamson, B., Tudzynski, B., Tudzynski, P., & Van Kan, J. A. L. (2007). Botrytis cinerea: the cause of grey mould disease. Molecular Plant Pathology, 8, 561–580.

    Article  CAS  PubMed  Google Scholar 

  • Yang, Y. T. (2003). Advance in research of epidemiology and control strategies for grey mould disease in China. Chinese Journal of Pesticide Science, 42, 6–9.

    Google Scholar 

  • Zhang, C. Q., Yuan, S. K., Sun, H. Y., Qi, Z. Q., Zhou, M. G., & Zhu, G. N. (2007). Sensitivity of Botrytis cinerea from vegetable greenhouses to boscalid. Plant Pathology, 56, 646–653.

    Article  CAS  Google Scholar 

  • Zhang, C. Q., Hu, J. L., Wei, F. L., & Zhu, G. N. (2009). Evolution of resistance to different classes of fungicides in Botrytis cinerea from greenhouse vegetables in Eastern China. Phytoparasitica, 37, 351–359.

    Article  CAS  Google Scholar 

  • Zhao, X. H., Zhong, L. J., Zhang, Q. H., Xu, C., Zhu, H. L., Lu, Z. J., Shen, L., Wang, G. J., & Jie, D. G. (2010). Effect of tetramycin on mycelial growth and spore germination of rice blast pathogen. Journal of Microbiology.

  • Zhong, L. J., Zhao, X. H., Zhang, Q. H., Xu, C., & Zhu, H. L. (2010). Rice resistance against blast induced by tetramycin. Plant Diseases and Pests, 1, 6–8.

    CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Research Award Fund for Excellent Young Scientist of Shandong Province (BS2011NY012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Y., He, L., Chen, L. et al. Baseline sensitivity and control efficacy of antibiosis fungicide tetramycin against Botrytis cinerea . Eur J Plant Pathol 146, 337–347 (2016). https://doi.org/10.1007/s10658-016-0920-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-016-0920-z

Keywords

Navigation