Skip to main content

Advertisement

Log in

Studies of tomato plants in response to infections with PVX and different PVY isolates reveal a remarkable PVX-PVYNTN synergism and diverse expression profiles of genes involved in different pathways

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Potato virus Y (PVY) undergoes continuous nucleotide mutation and genome recombination, leading to novel strains with varying pathogenicity on host plants. Little is known about how tomato plants respond to infections with different PVY strains, especially the emerging strains such as PVYNTN and PVYN:O, and in combination with other viral species such as Potato virus X (PVX). In this study, the response of tomato (cultivar Rutgers) plants to single and mixed infections with PVY and PVX was investigated. Plants infected singly with PVYO, PVYN:O, PVYN or PVYNTN developed mosaic symptoms and leaf deformation; whereas plants infected with PVX developed mild local lesion and varying degrees of mosaic and leaf deformation symptoms. Mixed PVX+PVY infections induced more severe symptoms, which include severe local and systemic leaf necrosis, leaf drop and severe leaf deformation, compared to single infections with PVX or PVY, indicating PVX-PVY synergism. The level of PVX-PVY synergism was affected significantly by PVY strains, with PVYNTN being the greatest effector. Quantitative analysis of viral titre indicated that mixed PVX+PVY infections elevated PVX level and reduced PVY level. A comparative transcriptional analysis of 46 key genes involved in signal molecule synthesis and signal transduction using NanoString technology revealed diverse gene expression profiles in both single and mixed infections. Two hierarchical expression clusters, one up-regulated and the other down-regulated, were observed during the infections. In general, mixed infections led to more genes being differentially regulated than single infections. The expression alteration of genes involved in oxidative stress and salicylic acid (SA)-pathways is particularly noteworthy, as the mixed infections, especially PVX+PVYNTN infections, led to a further elevation of reactive oxygen species (ROS) and SA producing abilities and a reduction of ROS scavenging ability over single infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abad, P., & Jorda, C. (2000). Characterization of potato Y potyvirus isolates from tomato crops in Islas Canarias (Spain). EPPO Bulletin, 30, 281–287.

    Article  Google Scholar 

  • Ali, A., & Hassan, S. (2002). Viruses infecting winter tomato crops in the North West Frontier Province of Pakistan. Australian Journal of Agricultural Research, 53, 333–338.

    Article  Google Scholar 

  • Aoki, K., Yano, K., Suzuki, A., Kawamura, S., Sakurai, N., Suda, K., Kurabayashi, A., Suzuki, T., Tsugane, T., & Watanabe, M. (2010). Large-scale analysis of full-length cDNAs from the tomato (Solanum lycopersicum) cultivar Micro-Tom, a reference system for the Solanaceae genomics. BMC Genomics, 11, 210.

    Article  PubMed Central  PubMed  Google Scholar 

  • Aramburu, J., Galipienso, L., & Matas, M. (2006). Characterization of potato virus Y isolates from tomato crops in northeast Spain. European Journal of Plant Pathology, 115, 247–258.

  • Arli-Sokmen, M., & Sevİk, M. A. (2006). Viruses infecting field-grown tomatoes in Samsun province, Turkey. Archives of Phytopathology and Plant Protection, 39, 283–288.

    Article  Google Scholar 

  • Asada, K. (2006). Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiology, 141, 391–396.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Blanco-Urgoiti, B., Dopazo, J., & Ponz, F. (1998). Potato virus Y group C isolates are a homogeneous pathotype but two different genetic strains. Journal of General Virology, 79, 2037–2042.

    Article  CAS  PubMed  Google Scholar 

  • Brigneti, G., Voinnet, O., Li, W. X., Ji, L. H., Ding, S. W., & Baulcombe, D. C. (1998). Viral pathogenicity determinants are suppressors of transgene silencing in Nicotiana benthamiana. EMBO Journal, 17, 6739–6746.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen, Z., Zheng, Z., Huang, J., Lai, Z., & Fan, B. (2009). Biosynthesis of salicylic acid in plants. Plant Signal Behavior, 4, 493–496.

    Article  CAS  Google Scholar 

  • Chiu, M. H., Chen, I., Baulcombe, D. C., & Tsai, C. H. (2010). The silencing suppressor P25 of Potato virus X interacts with Argonaute1 and mediates its degradation through the proteasome pathway. Molecular Plant Pathology, 11, 641–649.

    CAS  PubMed  Google Scholar 

  • Chung, B. Y. W., Miller, W. A., Atkins, J. F., & Firth, A. E. (2008). An overlapping essential gene in the Potyviridae. Proceedings of the National Academy of Sciences of the United States of America, 105, 5897–5902.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Crescenzi, A., Fanigliulo, A., & Comes, S. (2004). Characterisation of the Potato virus Y isolate PVY-LF02 inducing necrosis in tomato. Acta Horticulturae, 695, 331–338.

    Google Scholar 

  • Díaz-Vivancos, P., Clemente-Moreno, M. J., Rubio, M., Olmos, E., García, J. A., Martínez-Gómez, P., & Hernández, J. A. (2008). Alteration in the chloroplastic metabolism leads to ROS accumulation in pea plants in response to plum pox virus. Journal of Experimental Botany, 59, 2147–2160.

    Article  PubMed Central  PubMed  Google Scholar 

  • Ding, S. W. (2010). RNA-based antiviral immunity. Nature Reviews Immunology, 10, 632–644.

    Article  CAS  PubMed  Google Scholar 

  • Dougherty, W. G., & Carrington, J. C. (1988). Expression and function of potyviral gene products. Annual Review of Phytopathology, 26, 123–143.

    Article  CAS  Google Scholar 

  • Dullemans, A. M., Cuperus, C., Verbeek, M., & Vlugt, R. A. A. (2011). Complete nucleotide sequence of a potato isolate of strain group C of Potato virus Y from 1938. Archives of Virology, 156, 473–477.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Durrant, W., & Dong, X. (2004). Systemic acquired resistance. Annual Review of Phytopathology, 42, 185–209.

    Article  CAS  PubMed  Google Scholar 

  • Ellis, P., Stace-Smith, R., & De Villiers, G. (1997). Identification and geographic distribution of serotypes of potato virus Y. Plant Disease, 81, 481–484.

    Article  Google Scholar 

  • Ensminger, I., Sveshnikov, D., Campbell, D. A., Funk, C., Jansson, S., Lloyd, J., Shibistova, O., & Öquist, G. (2004). Intermittent low temperatures constrain spring recovery of photosynthesis in boreal Scots pine forests. Global Change Biology, 10, 995–1008.

    Article  Google Scholar 

  • Galvino-Costa, S., dos Reis Figueira, A., Camargos, V., Geraldino, P., Hu, X. J., Nikolaeva, O., Kerlan, C., & Karasev, A. (2012). A novel type of Potato virus Y recombinant genome, determined for the genetic strain PVYE. Plant Pathology, 61, 388–398.

    Article  CAS  Google Scholar 

  • García-Marcos, A., Pacheco, R., Martiáñez, J., González-Jara, P., Díaz-Ruíz, J. R., & Tenllado, F. (2009). Transcriptional changes and oxidative stress associated with the synergistic interaction between Potato virus X and Potato virus Y and their relationship with symptom expression. Molecular Plant-Microbe Interactions, 22, 1431–1444.

    Article  PubMed  Google Scholar 

  • Geiss, G. K., Bumgarner, R. E., Birditt, B., Dahl, T., Dowidar, N., Dunaway, D. L., Fell, H. P., Ferree, S., George, R. D., Grogan, T., James, J. J., Maysuria, M., Mitton, J. D., Oliveri, P., Osborn, J. L., Peng, T., Ratcliffe, A. L., Webster, P. J., Davidson, E. H., Hood, L., & Dimitrov, K. (2008). Direct multiplexed measurement of gene expression with color-coded probe pairs. Nature Biotechnology, 26, 317–325.

    Article  CAS  PubMed  Google Scholar 

  • Glais, L., Tribodet, M., & Kerlan, C. (2002). Genomic variability in Potato potyvirus Y (PVY): evidence that PVYNW and PVYNTN variants are single to multiple recombinants between PVYO and PVYN isolates. Archives of Virology, 147, 363–378.

    Article  CAS  PubMed  Google Scholar 

  • González-Jara, P., Tenllado, F., Martínez-García, B., Atencio, F., Barajas, D., Vargas, M., Díaz-Ruiz, J., & Díaz-Ruíz, J. (2004). Host-dependent differences during synergistic infection by Potyviruses with potato virus X. Molecular Plant Pathology, 5, 29–35.

    Article  PubMed  Google Scholar 

  • Goodman, R. M., & Ross, A. F. (1974). Enhancement of potato virus X synthesis in doubly infected tobacco occurs in doubly infected cells. Virology, 58, 16–24.

    Article  CAS  PubMed  Google Scholar 

  • Gorovits, R., Moshe, A., Ghanim, M., & Czosnek, H. (2013). Recruitment of the host plant heat shock protein 70 by tomato yellow leaf curl virus coat protein is required for virus infection. PloS One, 8, e70280.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Grant, M., & Lamb, C. (2006). Systemic immunity. Current Opinion in Plant Biology, 9, 414–420.

    Article  CAS  PubMed  Google Scholar 

  • Hasiow-Jaroszewska, B., Minicka, J., Stachecka, J., Borodynko, N., Piekna-Paterczyk, D., & Pospieszny, H. (2014). Diversity of the polish isolates of potato virus Y (PVY) from tomato. Progress in Plant Protection, 54, 288–292.

    Google Scholar 

  • Hofius, D., Maier, A. T., Dietrich, C., Jungkunz, I., Börnke, F., Maiss, E., & Sonnewald, U. (2007). Capsid protein-mediated recruitment of host DnaJ-like proteins is required for Potato virus Y infection in tobacco plants. Journal of Virology, 81, 11870–11880.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hu, X., Karasev, A. V., Brown, C. J., & Lorenzen, J. H. (2009a). Sequence characteristics of potato virus Y recombinants. Journal of General Virology, 90, 3033–3041.

    Article  CAS  PubMed  Google Scholar 

  • Hu, X., Meacham, T., Ewing, L., Gray, S. M., & Karasev, A. V. (2009b). A novel recombinant strain of Potato virus Y suggests a new viral genetic determinant of vein necrosis in tobacco. Virus Research, 143, 68–76.

    Article  CAS  PubMed  Google Scholar 

  • Hu, X., Nie, X., He, C., & Xiong, X. (2011). Differential pathogenicity of two different recombinant PVYNTN isolates in Physalis floridana is likely determined by the coat protein gene. Virology Journal, 8, 1–5.

    Article  Google Scholar 

  • Jaubert, M., Bhattacharjee, S., Mello, A. F., Perry, K. L., & Moffett, P. (2011). ARGONAUTE2 mediates RNA-silencing antiviral defenses against Potato virus X in Arabidopsis. Plant Physiology, 156, 1556–1564.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jiang, S., Lu, Y., Li, K., Lin, L., Zheng, H., Yan, F., & Chen, J. (2014). Heat shock protein 70 is necessary for rice stripe virus infection in plants. Molecular Plant Pathology, 15, 907–917.

    CAS  PubMed  Google Scholar 

  • Kadowaki, K., Ozawa, K., Kazama, S., Kubo, N., & Akihama, T. (1995). Creation of an initiation codon by RNA editing in the coxl transcript from tomato mitochondria. Current Genetics, 28, 415–422.

    Article  CAS  PubMed  Google Scholar 

  • Karasev, A. V., & Gray, S. M. (2013). Genetic diversity of Potato virus Y complex. American Jouranl of Potato Research, 90, 7–13.

    Article  CAS  Google Scholar 

  • Kerlan, C., Nikolaeva, O. V., Hu, X., Meacham, T., Gray, S. M., & Karasev, A. V. (2011). Identification of the molecular make-up of the Potato virus Y strain PVYZ: Genetic typing of PVYZ-NTN. Phytopathology, 101, 1052–1060.

    Article  CAS  PubMed  Google Scholar 

  • Kulkarni, M. M. (2011). Digital multiplexed gene expression analysis using the NanoString nCounter system. Current Protocols in Molecular Biology, 25B. 10. 21–25B. 10. 17.

  • Kumar, D., & Klessig, D. F. (2008). The search for the salicylic acid receptor led to discovery of the SAR signal receptor. Plant Signaling Behavior, 3, 691–692.

    Article  PubMed Central  PubMed  Google Scholar 

  • Lam, E., Kato, N., & Lawton, M. (2001). Programmed cell death, mitochondria and the plant hypersensitive response. Nature, 411, 848–853.

    Article  CAS  PubMed  Google Scholar 

  • Li, X. P., Björkman, O., Shih, C., Grossman, A. R., Rosenquist, M., Jansson, S., & Niyogi, K. K. (2000). A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature, 403, 391–395.

    Article  CAS  PubMed  Google Scholar 

  • Liu, J., Yang, J., Bi, H., & Zhang, P. (2014). Why mosaic? Gene expression profiling of African cassava mosaic virus-infected cassava reveals the effect of chlorophyll degradation on symptom development. Journal of Integrative Plant Biology, 56, 122–132.

    Article  CAS  PubMed  Google Scholar 

  • Lorenzen, J. H., Piche, L. M., Gudmestad, N. C., Meacham, T., & Shiel, P. (2006). A multiplex PCR assay to characterize Potato virus Y isolates and identify strain mixtures. Plant Disease, 90, 935–940.

    Article  CAS  Google Scholar 

  • MacLachlan, D., Larson, R., & Walker, J. (1954). Potato virus A. American Journal Potato Research, 31, 67–72.

    Article  Google Scholar 

  • Mandadi, K. K., & Scholthof, K. B. (2012). Characterization of a viral synergism in the monocot Brachypodium distachyon reveals distinctly altered host molecular processes associated with disease. Plant Physiology, 160, 1432–1452.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Massumi, H., Shaabanian, M., Hosseini Pour, A., Heydarnejad, J., & Rahimian, H. (2009). Incidence of viruses infecting tomato and their natural hosts in the southeast and central regions of Iran. Plant Disease, 93, 67–72.

    Article  CAS  Google Scholar 

  • Matos, A. R., Mendes, A. T., Scotti-Campos, P., & Arrabaça, J. D. (2009). Study of the effects of salicylic acid on soybean mitochondrial lipids and respiratory properties using the alternative oxidase as a stress-reporter protein. Physiologia Plantarum, 137, 485–497.

    Article  CAS  PubMed  Google Scholar 

  • Mochizuki, T., Yamazaki, R., Wada, T., & Ohki, S. T. (2014). Coat protein mutations in an attenuated Cucumber mosaic virus encoding mutant 2b protein that lacks RNA silencing suppressor activity induces chlorosis with photosynthesis gene repression and chloroplast abnormalities in infected tobacco plants. Virology, 456, 292–299.

    Article  PubMed  Google Scholar 

  • Moniz de Sá, M., & Drouin, G. (1996). Phylogeny and substitution rates of angiosperm actin genes. Molecular Biology and Evolution, 13, 1198–1212.

    Article  PubMed  Google Scholar 

  • Mosser, D. D., Caron, A. W., Bourget, L., Meriin, A. B., Sherman, M. Y., Morimoto, R. I., & Massie, B. (2000). The chaperone function of hsp70 is required for protection against stress-induced apoptosis. Molecular and Cellular Biology, 20, 7146–7159.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nie, X., & Singh, R. (2001a). A novel usage of random primers for multiplex RT-PCR detection of virus and viroid in aphids, leaves, and tubers. Journal of Virological Methods, 91, 37–49.

    Article  CAS  PubMed  Google Scholar 

  • Nie, X., & Singh, R. P. (2001b). Differential accumulation of Potato virus A and expression of pathogenesis-related genes in resistant potato cv. Shepody upon graft inoculation. Phytopathology, 91, 197–203.

    Article  CAS  PubMed  Google Scholar 

  • Nie, X., & Singh, R. P. (2002). A new approach for the simultaneous differentiation of biological and geographical strains of Potato virus Y by uniplex and multiplex RT-PCR. Journal of Virological Methods, 104, 41–54.

    Article  CAS  PubMed  Google Scholar 

  • Nie, X., & Singh, R. P. (2003a). Specific differentiation of recombinant PVYN:O and PVYNTN isolates by multiplex RT-PCR. Journal of Virological Methods, 113, 69–77.

    Article  CAS  PubMed  Google Scholar 

  • Nie, X., & Singh, R. P. (2003b). Evolution of North American PVYNTN strain Tu660 from local PVYN by mutation rather than recombination. Virus Genes, 26, 39–47.

    Article  CAS  PubMed  Google Scholar 

  • Nie, X., & Singh, M. (2013). Response of potato, tobacco and Physalis floridana plants to mixed infection with PVX, PVYNTN and PVY° strains. Canadian Journal of Plant Pathology, 35, 390–401.

    Article  CAS  Google Scholar 

  • Nie, X., Singh, R. P., & Singh, M. (2004). Molecular and pathological characterization of N: O isolates of the Potato virus Y from Manitoba, Canada. Canadian Journal of Plant Pathology, 26, 573–583.

    Article  CAS  Google Scholar 

  • Nie, B., Singh, M., Sullivan, A., Singh, R. P., Xie, C., & Nie, X. (2011). Recognition and molecular discrimination of severe and mild PVYO variants of Potato virus Y in potato in New Brunswick, Canada. Plant Disease, 95, 113–119.

    Article  Google Scholar 

  • Nie, B., Singh, M., Murphy, A., Sullivan, A., Xie, C., & Nie, X. (2012). Response of potato cultivars to five isolates belonging to four strains of Potato virus Y. Plant Disease, 96, 1422–1429.

    Article  CAS  Google Scholar 

  • Nie, X., Singh, M., Pelletier, Y., & McLaren, D. (2013). Recent advances on Potato virus Y research in Canada. American Journal Potato Research, 90, 14–20.

    Article  CAS  Google Scholar 

  • Niyogi, K. K., Li, X. P., Rosenberg, V., & Jung, H. S. (2005). Is PsbS the site of non-photochemical quenching in photosynthesis? Journal of Experimental Botany, 56, 375–382.

    Article  CAS  PubMed  Google Scholar 

  • Ogawa, D., Nakajima, N., Seo, S., Mitsuhara, I., Kamada, H., & Ohashi, Y. (2006). The phenylalanine pathway is the main route of salicylic acid biosynthesis in Tobacco mosaic virus-infected tobacco leaves. Plant Biotechnology, 23, 395–398.

    Article  CAS  Google Scholar 

  • Ohnishi, J., Hirai, K., Kanda, A., Usugi, T., Meshi, T., & Tsuda, S. (2009). The coat protein of Tomato mosaic virus L11Y is associated with virus-induced chlorosis on infected tobacco plants. Journal of General Plant Pathology, 75, 297–306.

    Article  CAS  Google Scholar 

  • Overmyer, K., Brosché, M., & Kangasjärvi, J. (2003). Reactive oxygen species and hormonal control of cell death. Trends in Plant Science, 8, 335–342.

    Article  CAS  PubMed  Google Scholar 

  • Pacheco, R., García-Marcos, A., Barajas, D., Martiáñez, J., & Tenllado, F. (2012). PVX–potyvirus synergistic infections differentially alter microRNA accumulation in Nicotiana benthamiana. Virus Research, 165, 231–235.

    Article  CAS  PubMed  Google Scholar 

  • Pruss, G., Ge, X., Shi, X. M., Carrington, J. C., & Vance, V. B. (1997). Plant viral synergism: the potyviral genome encodes a broad-range pathogenicity enhancer that transactivates replication of heterologous viruses. Plant Cell, 9, 859–868.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Quenouille, J., Vassilakos, N., & Moury, B. (2013). Potato virus Y: a major crop pathogen that has provided major insights into the evolution of viral pathogenicity. Molecular Plant Pathology, 14, 439–452.

    Article  CAS  PubMed  Google Scholar 

  • Riedle-Bauer, M. (2000). Role of reactive oxygen species and antioxidant enzymes in systemic virus infections of plants. Journal Phytopathology, 148, 297–302.

    Article  CAS  Google Scholar 

  • Rochow, W., & Ross, A. F. (1955). Virus multiplication in plants doubly infected by potato viruses X and Y. Virology, 1, 10–27.

    Article  CAS  PubMed  Google Scholar 

  • Rosner, A., Lachman, A., Pearlsman, M., Maslenin, L., & Antignus, Y. (2000). Molecular characterisation and differential diagnosis of a necrotic PVY isolate in tomato. Annals of Applied Biology, 137, 253–257.

    Article  CAS  Google Scholar 

  • Satoh, K., Shimizu, T., Kondoh, H., Hiraguri, A., Sasaya, T., Choi, I. R., Omura, T., & Kikuchi, S. (2011). Relationship between symptoms and gene expression induced by the infection of three strains of Rice dwarf virus. PloS One, 6, e18094.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Scheler, C., Durner, J., & Astier, J. (2013). Nitric oxide and reactive oxygen species in plant biotic interactions. Current Opinion in Plant Biology, 16, 534–539.

    Article  CAS  PubMed  Google Scholar 

  • Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9, 671–675.

    Article  CAS  PubMed  Google Scholar 

  • Schuck, J., Gursinsky, T., Pantaleo, V., Burgyán, J., & Behrens, S. E. (2013). AGO/RISC-mediated antiviral RNA silencing in a plant in vitro system. Nucleic Acids Research, 41, 5090–5103.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shewmaker, C., Ridge, N., Pokalsky, A., Rose, R., & Hiatt, W. (1990). Nucleotide sequence of an EF-1 alpha genomic clone from tomato. Nucleic Acids Research, 18, 4276.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Singh, M., & Singh, P. (1996). Nucleotide sequence and genome organization of a Canadian isolate of the common strain of potato virus Y (PVY). Canadian Journal Plant Pathology, 18, 209–224.

    Article  CAS  Google Scholar 

  • Singh, R., Nie, X., Singh, M., Coffin, R., & Duplessis, P. (2002). Sodium sulphite inhibition of potato and cherry polyphenolics in nucleic acid extraction for virus detection by RT-PCR. Journal Virological Methods, 99, 123–131.

    Article  CAS  Google Scholar 

  • Singh, R. P., McLaren, D. L., Nie, X., & Singh, M. (2003). Possible escape of a recombinant isolate of Potato virus Y by serological indexing and methods of its detection. Plant Disease, 87, 679–685.

    Article  CAS  Google Scholar 

  • Singh, R. P., Valkonen, J. P., Gray, S. M., Boonham, N., Jones, R. A. C., Kerlan, C., & Schubert, J. (2008). Discussion paper: the naming of potato virus Y strains infecting potato. Archives of Virology, 153, 1–13.

    Article  CAS  PubMed  Google Scholar 

  • Singh, M., Singh, R. P., Fageria, M., Nie, X., Coffin, R., & Hawkins, G. (2013). Optimization of a real-time RT-PCR assay and its comparison with ELISA, conventional RT-PCR and the grow-out test for large scale diagnosis of Potato virus Y in dormant potato tubers. American Journal of Potato Research, 90, 43–50.

    Article  CAS  Google Scholar 

  • Song, X. S., Wang, Y. J., Mao, W. H., Shi, K., Zhou, Y. H., Nogués, S., & Yu, J. Q. (2009). Effects of cucumber mosaic virus infection on electron transport and antioxidant system in chloroplasts and mitochondria of cucumber and tomato leaves. Physiologia Plantarum, 135, 246–257.

    Article  CAS  PubMed  Google Scholar 

  • Soosaar, J. L., Burch-Smith, T. M., & Dinesh-Kumar, S. P. (2005). Mechanisms of plant resistance to viruses. Nature Reviews Microbiology, 3, 789–798.

    Article  CAS  PubMed  Google Scholar 

  • Thomas, J. E., & McGrath, D. J. (1988). Inheritance of resistance to potato virus Y in tomato. Crop and Pasture Science, 39, 475–479.

    Article  Google Scholar 

  • Vance, V. B., Berger, P. H., Carrington, J. C., Hunt, A. G., & Ming, S. X. (1995). 5′ proximal potyviral sequences mediate potato virus X/potyviral synergistic disease in transgenic tobacco. Virology, 206, 583–590.

    Article  CAS  PubMed  Google Scholar 

  • Vanlerberghe, G. C. (2013). Alternative oxidase: a mitochondrial respiratory pathway to maintain metabolic and signaling homeostasis during abiotic and biotic stress in plants. International Journal of Molecular Sciences, 14, 6805–6847.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Voinnet, O., Lederer, C., & Baulcombe, D. C. (2000). A viral movement protein prevents spread of the gene silencing signal in Nicotiana benthamiana. Cell, 103, 157–167.

    Article  CAS  PubMed  Google Scholar 

  • Yang, C., Guo, R., Jie, F., Nettleton, D., Peng, J., Carr, T., Yeakley, J. M., Fan, J. B., & Whitham, S. A. (2007). Spatial analysis of Arabidopsis thaliana gene expression in response to Turnip mosaic virus infection. Molecular Plant-Microbe Interactions, 20, 358–370.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y., Fan, W., Kinkema, M., Li, X., & Dong, X. (1999). Interaction of NPR1 with basic leucine zipper protein transcription factors that bind sequences required for salicylic acid induction of the PR-1 gene. Proceedings of the National Academy of Sciences of the United States of America, 96, 6523–6528.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhao, R., & Houry, W. A. (2005). Hsp90: a chaperone for protein folding and gene regulation. Biochemistry and Cell Biology, 83, 703–710.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, J. M., Trifa, Y., Silva, H., Pontier, D., Lam, E., Shah, J., & Klessig, D. F. (2000). NPR1 differentially interacts with members of the TGA/OBF family of transcription factors that bind an element of the PR-1 gene required for induction by salicylic acid. Molecular Plant-Microbe Interactions, 13, 191–202.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the greenhouse staff at the Potato Research Centre for horticultural assistance. This research was funded by Agriculture and Agri-Food Canada under the Project #1110. Z Liang was a receipt of the Ministry of Education of China-AAFC Ph.D. Student Internship Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianzhou Nie.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

Symptoms induced by PVX and PVY strains on inoculated leaflets in tomato (cv. Rutgers). (A), PVX; (B): PVYO-FL; (C), PVYO-RB; (D) PVYN:O-Mb58; (E) PVYNTN-Sl; (F) PVYN-Jg; (G) PVX+PVYO-FL; (H) PVX+PVYO-RB; (I) PVX+PVYN:O-Mb58; (J) PVX+PVYNTN-Sl; (K) PVX+PVYN-Jg; (L) Mock. Local lesions (necrotic spots) can be seen in (A) and (G)-(F). The photographs were taken at 6 days post-inoculation (dpi). Experiments were repeated three times and similar results were obtained. (GIF 40 kb)

High Resolution Image (TIFF 9417 kb)

Figure S2

Symptoms on the third leaves from the top in PVX and PVY infected plants. (A) PVX; (B) PVYO-FL; (C) PVYO-RB; (D) PVYN:O-Mb58; (E) PVYNTN-Sl; (F) PVYN-Jg; (G) PVX+PVYO-FL; (H) PVX+PVYO-RB; (I) PVX+PVYN:O-Mb58; (J) PVX+PVYNTN-Sl; (K) PVX+PVYN-Jg; (L) Mock. The photographs were taken at 39 days post-inoculation (dpi). The experiment was repeated three times with similar results. Symptom types and severities in (A), intermediate chlorosis and leaf rugosity/deformation; (B)-(D) and (F), mild mosaic and leaf rugosity/deformation; (E), mild mosaic and intermediate leaf rugosity/deformation; (G)-(I) and (K), severe chlorosis and leaf rugosity/deformation; (J), extremely severe chlorosis and leaf rugosity/deformation. (GIF 3334 kb)

High Resolution Image (TIFF 9261 kb)

Table S1

Enzyme-linked-immunosorbent assay (ELISA) for detection of viruses in inocula using various PVX and PVY antibodies. (DOC 32 kb)

Table S2

PVX and PVY levels measured by RT-PCR. (DOC 32 kb)

Table S3

Probe sequences used for NanoString nCounter analysis of gene expression. (DOC 69 kb)

Table S4

Effect of single and mixed infections with PVX and PVY on gene expression in tomato. (XLSX 30 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Z., Dickison, V., Singh, M. et al. Studies of tomato plants in response to infections with PVX and different PVY isolates reveal a remarkable PVX-PVYNTN synergism and diverse expression profiles of genes involved in different pathways. Eur J Plant Pathol 144, 55–71 (2016). https://doi.org/10.1007/s10658-015-0750-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-015-0750-4

Keywords

Navigation