Skip to main content
Log in

Epidemiology and management of brown rot on stone fruit caused by Monilinia laxa

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Stone fruit is attacked by various pathogens, of which brown rot disease is one of the important diseases. There are three Monilinia species mainly responsible for the brown rot disease: Monilinia fructicola is mainly found in North America and Australasia, and M. laxa and M. fructigena mainly in Europe. Both M. fructicola and M. laxa can infect flowers, resulting in blossom blight, as well as both healthy and wounded fruit, resulting in brown rot. On the other hand, M. fructigena can only infect wounded fruit. Compared to the two other species, M. fructicola has been extensively studied, whereas the equally important M. laxa has had less attention. This paper addresses this imbalance and reviews research on the biology, epidemiology and management of M. laxa on stone fruits. Due to EU regulations, the number of fungicides available for controlling plant diseases has been steadily decreasing, particularly in the post-harvest environment. This has placed much more emphasis on alternative control methods, a focus of the present review. Numerous physical and biological approaches to control have achieved successful outcomes but often in small-scale trials and in isolation from integrated strategies. Promising physical control methods include removal of mummified fruit in orchards and post-harvest hot-water treatment. Many micro-organisms have been shown to have biocontrol potential against brown rot but only a few have been commercially formulated. It is generally agreed that the use of biocontrol agents needs to be integrated with other measures. Current research focuses on disease management from flowering to post-harvest period. Recent results have suggested that reducing overwintering inoculum should be considered as one of key aspects of integrated management of brown rot on stone fruit. Finally, we make recommendations about future research and development on integrated pest management strategies for control of M. laxa, especially on strategic deployment of biocontrol agents and interactions among brown rot pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aderhold, R., & Ruhland, W. (1905). Zur kenntnis der obstbaum-sclerotinien. Arbeiten aus der Kaiserlichen Biologischen Anstaltfür Land und Forstwirtschaft, 5, 427–442.

    Google Scholar 

  • AgraQuest (2009). Serenade ASO: Safety data sheet: according to Directive 2001/58/EC and U.S. 29 CFR 1910.1200.

  • Akbudak, B., Tezcan, H., & Eris, A. (2009). Evaluation of messenger plant activator as a preharvest and postharvest treatment of sweet cherry fruit under a controlled atmosphere. International Journal of Food Sciences and Nutrition, 60, 374–386.

    CAS  PubMed  Google Scholar 

  • Allen, M., & Silver, B. (2010). Cherries. Journal of Agricultural and Food Information, 11, 275–281.

    Google Scholar 

  • Altindag, M., Sahin, M., Esitken, A., Ercisli, S., Guleryuz, M., Donmez, M. F., et al. (2006). Biological control of brown rot (Monilinia laxa Ehr.) on apricot (Prunus armeniaca L. cv. Hacihaliloglu) by Bacillus, Burkholdria, and Pseudomonas application under in vitro and in vivo conditions. Biological Control, 38, 369–372.

  • Arrebola, E., Jacobs, R., & Korsten, L. (2010). Iturin A is the principal inhibitor in the biocontrol activity of Bacillus amyloliquefaciens PPCB004 against postharvest fungal pathogens. Journal of Applied Microbiology, 108, 386–395.

    CAS  PubMed  Google Scholar 

  • Balla, B., & Holb, I. (2007). Effect of three storage methods on fruit decay and brown rot of apple. International Journal of Horticultural Science, 13, 55–57.

    Google Scholar 

  • Belisario, A., Luongo, L., & Corazza, L. (1999). Identification of Monilinia species by total mycelial protein SDS-PAGE. Phytopathologia Mediterranea, 38, 115–121.

    CAS  Google Scholar 

  • Bhatnagar, I., & Kim, S. K. (2010). Immense essence of excellence: marine microbial bioactive compounds. Marine Drugs, 8, 2673–2701.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bio-ferm (2011). BoniProtect: Safety data sheet: according to 1907/2006/EG, Article 31. Biotechnologische Entwicklung und Produktion GmbH,

  • Borve, J., & Stensvand, A. (2003). Use of a plastic rain shield reduces fruit decay and need for fungicides in sweet cherry. Plant Disease, 87, 523–528.

    Google Scholar 

  • Burges, H. D., & Jones, K. (1998). Trends in formulation of microorganisms and future research requirements. In H. D. Burges (Ed.), Formulation of microbial biopesticides (pp. 311–332). Netherlands: Springer.

    Google Scholar 

  • Byrde, R. J. W., & Willetts, H. J. (1977). The brown rot fungi of fruit, their biology and control. Oxford: Pergamon Press Limited.

    Google Scholar 

  • CABI (2010). Distribution Maps of Plant Diseases, Monilinia fructicola (G. Winter) Honey. Ascomycota: Helotiales. CAB International, p Map No. 50

  • Casals, C., Teixido, N., Vinas, I., Cambray, J., & Usall, J. (2010a). Control of Monilinia spp. on stone fruit by curing treatments. Part II: The effect of host and Monilinia spp. variables on curing efficacy. Postharvest Biology and Technology, 56, 26–30.

    CAS  Google Scholar 

  • Casals, C., Teixido, N., Vinas, I., Llaurado, S., & Usall, J. (2010b). Control of Monilinia spp. on stone fruit by curing treatments Part I. The effect of temperature, exposure time and relative humidity on curing efficacy. Postharvest Biology and Technology, 56, 19–25.

    CAS  Google Scholar 

  • Casals, C., Teixido, N., Vinas, I., Silvera, E., Lamarca, N., & Usall, J. (2010c). Combination of hot water, Bacillus subtilis CPA-8 and sodium bicarbonate treatments to control postharvest brown rot on peaches and nectarines. European Journal of Plant Pathology, 128, 51–63.

  • Casals, C., Vinas, I., Landl, A., Picouet, P., Torres, R., & Usall, J. (2010d). Application of radio frequency heating to control brown rot on peaches and nectarines. Postharvest Biology and Technology, 58, 218–224.

    Google Scholar 

  • Casals, C., Vinas, I., Torres, R., Griera, C., & Usall, J. (2010e). Effect of temperature and water activity on in vitro germination of Monilinia spp. Journal of Applied Microbiology, 108, 47–54.

    CAS  PubMed  Google Scholar 

  • Casals, C., Elmer, P. A. G., Vinas, I., Teixido, N., Sisquella, M., & Usall, J. (2012). The combination of curing with either chitosan or Bacillus subtilis CPA-8 to control brown rot infections caused by Monilinia fructicola. Postharvest Biology and Technology, 64, 126–132.

    CAS  Google Scholar 

  • Cote, M. J., Tardif, M. C., & Meldrum, A. J. (2004). Identification of Monilinia fructigena, M. fructicola, M. laxa and Monilia polystroma on inoculated and naturally infected fruit using multiplex PCR. Plant Disease, 88, 1219–1225.

    CAS  Google Scholar 

  • CPL (2010). Biopesticides - market studies: The worldwide biopesticides market summary. CPL Business Consultants.

  • De Cal, A., & Melgarejo, P. (1994). Effects of Penicillium frequentans and its antibiotics on unmelanized hyphae of Monilinia laxa. Phytopathology, 84, 1010–1014.

    Google Scholar 

  • De Cal, A., Larena, I., Guijarro, B., & Melgarejo, P. (2002). Mass production of conidia of Penicillium frequentans, a biocontrol agent against brown rot of stone fruits. Biocontrol Science and Technology, 12, 715–725.

    Google Scholar 

  • De Cal, A., Larena, I., Linan, M., Torres, R., Lamarca, N., Usall, J., et al. (2009). Population dynamics of Epicoccum nigrum, a biocontrol agent against brown rot in stone fruit. Journal of Applied Microbiology, 106, 592–605.

    PubMed  Google Scholar 

  • De Cal, A., Sandín-España, P., Martinez, F., Egüen, B., Chien-Ming, C., Lee, M. H., et al. (2013). Role of gluconic acid and pH modulation in virulence of Monilinia fructicola on peach fruit. Postharvest Biology and Technology, 86, 418–423.

  • De Corato, U., Maccioni, O., Trupo, M., & Di Sanzo, G. (2010). Use of essential oil of Laurus nobilis obtained by means of a supercritical carbon dioxide technique against post-harvest spoilage fungi. Crop Protection, 29, 142–147.

    Google Scholar 

  • EFSA. (2011). Pest risk assessment of Monilinia fructicola for the EU territory and identification and evaluation of risk management options. EFSA Journal, 9, 2119.

    Google Scholar 

  • Ehrenberg, C. G. (1818). Sylvae Mycologicae Berolinenses 22

  • Emery, K. M., Michailides, T. J., & Scherm, H. (2000). Incidence of latent infection of immature peach fruit by Monilinia fructicola and relationship to brown rot in Georgia. Plant Disease, 84, 853–857.

  • EPPO. (2002). First report of Monilinia fructicola in France. EPPO Reporting Service, 1, 6–7.

    Google Scholar 

  • EPPO. (2009). Diagnostics: Monilinia fructicola. EPPO Bulletin, 39, 337–343.

    Google Scholar 

  • Everhart, S. E., Askew, A., Seymour, L., Holb, I. J., & Scherm, H. (2011). Characterization of three-dimensional spatial aggregation and association patterns of brown rot symptoms within intensively mapped sour cherry trees. Annals of Botany, 108, 1195–1202.

    PubMed Central  PubMed  Google Scholar 

  • Everhart, S. E., Askew, A., Seymour, L., & Scherm, H. (2013). Spatio-temporal patterns of pre-harvest brown rot epidemics within individual peach tree canopies. European Journal of Plant Pathology, 135, 499–508.

    Google Scholar 

  • Fan, J., Guo, L., Xu, J., Luo, Y., & Michailides, T. J. (2010). Genetic diversity of populations of Monilinia fructicola (Fungi, Ascomycota, Helotiales) from China. Journal of Eukaryotic Microbiology, 57, 206–212.

    CAS  PubMed  Google Scholar 

  • Fawcett, C. H., & Spencer, D. M. (1966). Antifungal compounds in apple fruit infected with Sclerotinia fructigena. Nature, 211, 548–549.

    CAS  PubMed  Google Scholar 

  • Feliziani, E., Santini, M., Landi, L., & Romanazzi, G. (2013). Pre- and postharvest treatment with alternatives to synthetic fungicides to control postharvest decay of sweet cherry. Postharvest Biology & Technology, 78, 133–138.

    CAS  Google Scholar 

  • Forster, H., & Adaskaveg, J. E. (2000). Early brown rot infections in sweet cherry fruit are detected by Monilinia-specific DNA primers. Phytopathology, 90, 171–178.

    CAS  PubMed  Google Scholar 

  • Fourie, P. H., & Holz, G. (2003). Germination of dry, airborne conidia of Monilinia laxa and disease expression on nectarine fruit. Australasian Plant Pathology, 32, 9–18.

    Google Scholar 

  • Fourie, P. H., & Holz, G. (2006). Wound infection of plum fruit by airborne conidia of Monilinia laxa. Australasian Plant Pathology, 35, 435–439.

    Google Scholar 

  • Fulton, C. E., van Leeuwen, G. C. M., & Brown, A. E. (1999). Genetic variation among and within Monilinia species causing brown rot of stone and pome fruits. European Journal of Plant Pathology, 105, 495–500.

    Google Scholar 

  • Gell, I., Cubero, J., & Melgarejo, P. (2007a). Two different PCR approaches for universal diagnosis of brown rot and identification of Monilinia spp. in stone fruit trees. Journal of Applied Microbiology, 103, 2629–2637.

    CAS  PubMed  Google Scholar 

  • Gell, I., Larena, I., & Melgarejo, P. (2007b). Genetic diversity in Monilinia laxa populations in peach orchards in Spain. Journal of Phytopathology, 155, 549–556.

    CAS  Google Scholar 

  • Gell, I., De Cal, A., Torres, R., Usall, J., & Melgarejo, P. (2009). Conidial density of Monilinia spp. on peach fruit surfaces in relation to the incidences of latent infections and brown rot. European Journal of Plant Pathology, 123, 415–424.

    Google Scholar 

  • Gril, T., Celar, F., Munda, A., Javornik, B., & Jakse, J. (2008). AFLP Analysis of intraspecific variation between Monilinia laxa isolates from different hosts. Plant Disease, 92, 1616–1624.

    CAS  Google Scholar 

  • Gril, T., Celar, F., Javornik, B., & Jakse, J. (2010). Fluorescent AFLP fingerprinting of Monilinia fructicola. Journal of Plant Diseases and Protection, 117, 168–172.

    CAS  Google Scholar 

  • Guijarro, B., Melgarejo, P., & De Cal, A. (2008a). Influence of additives on adhesion of Penicillium frequentans conidia to peach fruit surfaces and relationship to the biocontrol of brown rot caused by Monilinia laxa. International Journal of Food Microbiology, 126, 24–29.

    CAS  PubMed  Google Scholar 

  • Guijarro, B., Melgarejo, P., Torres, R., Lamarca, N., Usall, J., & Cal, D. A. (2008b). Penicillium frequentans population dynamics on peach fruits after its applications against brown rot in orchards. Journal of Applied Microbiology, 104, 659–671.

    CAS  PubMed  Google Scholar 

  • Guo, B., Wang, Y., Sun, X., & Tang, K. (2008). Bioactive natural products from endophytes: A review. Applied Biochemistry and Microbiology, 44, 136–142.

    CAS  Google Scholar 

  • Hall, R. (1963). Cytology of the asexual stages of the australian brown rot fungus Monilinia fructicola. Cytologia (Tokyo), 28, 181–193.

    Google Scholar 

  • Hayakawa, M., Yoshida, Y., & Iimura, Y. (2004). Selective isolation of bioactive soil actinomycetes belonging to the Streptomyces violaceusniger phenotypic cluster. Journal of Applied Microbiology, 96, 973–981.

    CAS  PubMed  Google Scholar 

  • Hoffman, G. (1974). Zum Vorkommen von Heterokaryose bei Monilinia laxa. Journal of Phytopathology, 79, 193–202.

    Google Scholar 

  • Holb, I. J. (2003). The brown rot fungi of fruit crops (Monilinia spp.) I. Important features of their biology. International Journal of Horticultural Science, 9, 23–36.

    Google Scholar 

  • Holb, I. J. (2004a). The brown rot fungi of fruit crops (Monilinia spp.) II. Important features of their epidemiology. International Journal of Horticultural Science, 10, 17–35.

    Google Scholar 

  • Holb, I. J. (2004b). The brown rot fungi of fruit crops (Monilinia spp.) III. Important features of their disease control. International Journal of Horticultural Science, 10, 31–48.

    Google Scholar 

  • Holb, I. J. (2008). Brown rot blossom blight of pome and stone fruits: symptom, disease cycle, host resistance, and biological control. International Journal of Horticultural Science, 14, 15–21.

    Google Scholar 

  • Holb, I. J. (2013). Genetic diversity of Monilinia laxa isolates from Hungary using PCR-based ISSR technique. Phytopathology, 103, 61–61.

    Google Scholar 

  • Holb, I. J., & Scherm, H. (2007). Temporal dynamics of brown rot in different apple management systems and importance of dropped fruit for disease development. Phytopathology, 97, 1104–1111.

    CAS  PubMed  Google Scholar 

  • Holb, I. J., & Schnabel, G. (2005). Effect of fungicide treatments and sanitation practices on brown rot blossom blight incidence, phytotoxicity, and yield for organic sour cherry production. Plant Disease, 89, 1164–1170.

    CAS  Google Scholar 

  • Holb, I. J., Szabo, T., Thurzo, S., Nyeki, J., Dren, G., Racsko, J., Szabo, Z., Soltesz, M., & Veres, Z. (2008). Incidence of brown rot blossom blight (Monilinia laxa [Aderhold & Ruhland]) and fruit rot in organic sour cherry production in Hungary. Acta Horticulturae, 913–917.

  • Holb, I. J., Szőke, S., & Abonyi, F. (2013). Temporal development and relationship amongst brown rot blossom blight, fruit blight and fruit rot in integrated and organic sour cherry orchards. Plant Pathology, 62, 799–808.

    Google Scholar 

  • Holmes, R., Kreidl, S., Villalta, O., Gouk, C., Thomson, F., Hossain, M., Sessions, W., Mace, E., Bryne, L., Lorimer, S., Wu, W., & Zhang, X. (2011). Through chain approach for managing brown rot in summerfruit and canning fruit- Project code MT08039. Biosciences Research Division, Department of Primary Industries, Victoria, Australia, p 76

  • Holst-Jensen, A., Kohn, L., Jakobsen, K., & Schumacher, T. (1997). Molecular phylogeny and evolution of Monilinia (Sclerotiniaceae) based on coding and noncoding rDNA sequences. American Journal of Botany, 84, 686–701.

    CAS  PubMed  Google Scholar 

  • Holtz, B. A., Michailides, T. J., & Hong, C. (1998). Development of apothecia from stone fruit infected and stromatized by Monilinia fructicola in California. Plant Disease, 82, 1375–1380.

    Google Scholar 

  • Hong, C. X., & Michailides, T. J. (1999). Mycelial growth, sporulation, and survival of Monilinia fructicola in relation to osmotic potential and temperature. Mycologia, 91, 871–876.

    Google Scholar 

  • Hrustic, J., Mihajlovic, M., Tanovic, B., Delibasic, G., Stankovic, I., Krstic, B., et al. (2012). First report of brown rot caused by Monilinia fructicola on nectarine in Serbia. Plant Disease, 97, 147–147.

    Google Scholar 

  • Hu, M.-J., Cox, K. D., Schnabel, G., & Luo, C.-X. (2011a). Monilinia species causing brown rot of peach in China. PLoS ONE, 6, e24990.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hu, M., Chen, Y., Chen, S., Liu, X., Yin, L., & Luo, C. (2011b). First report of brown rot of peach caused by Monilinia fructicola in south-eastern China. Plant Disease, 95, 225–225.

    Google Scholar 

  • Huang, T., Tzeng, D. D., Wong, A. C. L., Chen, C., Lu, K., Lee, Y., et al. (2012). DNA Polymorphisms and biocontrol of Bacillus antagonistic to citrus bacterial canker with indication of the interference of phyllosphere biofilms. PLoS ONE, 7, e42124.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hughes, K. J. D., Fulton, C. E., McReynolds, D., & Lane, C. R. (2000). Development of new PCR primers for identification of Monilinia species. EPPO Bulletin, 30, 507–511.

    Google Scholar 

  • Janisiewicz, W. J., & Buyer, J. S. (2010). Culturable bacterial microflora associated with nectarine fruit and their potential for control of brown rot. Canadian Journal of Microbiology, 56, 480–486.

    CAS  PubMed  Google Scholar 

  • Janisiewicz, W. J., Kurtzman, C. P., & Buyer, J. S. (2010). Yeasts associated with nectarines and their potential for biological control of brown rot. Yeast, 27, 389–398.

    CAS  PubMed  Google Scholar 

  • Janisiewicz, W. J., Jurick Ii, W. M., Vico, I., Peter, K. A., & Buyer, J. S. (2013). Culturable bacteria from plum fruit surfaces and their potential for controlling brown rot after harvest. Postharvest Biology and Technology, 76, 145–151.

    CAS  Google Scholar 

  • Jansch, M., Frey, J. E., Hilber-Bodmer, M., Broggini, G. A. L., Weger, J., Schnabel, G., et al. (2012). SSR Marker analysis of Monilinia fructicola from Swiss apricots suggests introduction of the pathogen from neighbouring countries and the United States. Plant Pathology, 61, 247–254.

    CAS  Google Scholar 

  • Jemric, T., Ivic, D., Fruk, G., Matijas, H., Cvjetkovic, B., Bupic, M., et al. (2010). Reduction of postharvest decay of peach and nectarine caused by Monilinia laxa using hot water dipping. Food and Bioprocess Technology, 4, 149–154.

    Google Scholar 

  • Jerebzoff, S., & Jacques, R. (1972). Equal quantal spectra for the effect of light on the growth of conidiophores and for the induction of a circadian rhythm of zonation in Sclerotinia fructicola (Wint.) Rehm. Plant Physiology, 50, 187–190.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Karabulut, O. A., Smilanick, J. L., Crisosto, C. H., & Palou, L. (2010). Control of brown rot of stone fruits by brief heated water immersion treatments. Crop Protection, 29, 903–906.

    Google Scholar 

  • Keske, C., Amorim, L., & May-De Mio, L. L. (2011). Peach brown rot incidence related to pathogen infection at different stages of fruit development in an organic peach production system. Crop Protection, 30, 802–806.

    Google Scholar 

  • Koball, D. C., Wilcox, W. F., & Seem, R. C. (1997). Influence of incubation-period humidity on the development of brown rot blossom blight of sour cherry. Phytopathology, 87, 42–49.

    CAS  PubMed  Google Scholar 

  • Larena, I., De Cal, A., Linan, M., & Melgarejo, P. (2003). Drying of Epicoccum nigrum conidia for obtaining a shelf-stable biological product against brown rot disease. Journal of Applied Microbiology, 94, 508–514.

    CAS  PubMed  Google Scholar 

  • Larena, I., De Cal, A., & Melgarejo, P. (2004). Solid substrate production of Epicoccum nigrum conidia for biological control of brown rot on stone fruits. International Journal of Food Microbiology, 94, 161–167.

    CAS  PubMed  Google Scholar 

  • Larena, I., Torres, R., Cal, D. A., Linan, M., Melgarejo, P., Domenichini, P., et al. (2005). Biological control of postharvest brown rot (Monilinia spp.) of peaches by field applications of Epicoccum nigrum. Biological Control, 32, 305–310.

  • Larena, I., De Cal, A., & Melgarejo, P. (2010). Enhancing the adhesion of Epicoccum nigrum conidia to peach surfaces and its relationship to the biocontrol of brown rot caused by Monilinia laxa. Journal of Applied Microbiology, 109, 583–593.

    CAS  PubMed  Google Scholar 

  • Lee, M. H., & Bostock, R. M. (2007). Fruit exocarp phenols in relation to quiescence and development of Monilinia fructicola infections in Prunus spp.: A role for cellular redox? Phytopathology, 97, 269–277.

    CAS  PubMed  Google Scholar 

  • Liu, J., He, D., Li, X., Gao, S., Wu, H., Liu, W., et al. (2010). γ-Polyglutamic acid (γ-PGA) produced by Bacillus amyloliquefaciens C06 promoting its colonization on fruit surface. International Journal of Food Microbiology, 142, 190–197.

    CAS  PubMed  Google Scholar 

  • Liu, J., Zhou, T., He, D., Li, X., Wu, H., Liu, W., et al. (2011). Functions of lipopeptides bacillomycin D and fengycin in antagonism of Bacillus amyloliquefaciens C06 towards Monilinia fructicola. Journal of Molecular Microbiology and Biotechnology, 20, 43–52.

    PubMed  Google Scholar 

  • Liu, J., Sui, Y., Wisniewski, M., Droby, S., Tian, S., Norelli, J., et al. (2012a). Effect of heat treatment on inhibition of Monilinia fructicola and induction of disease resistance in peach fruit. Postharvest Biology and Technology, 65, 61–68.

    CAS  Google Scholar 

  • Liu, J., Sui, Y., Wisniewski, M., Droby, S., Tian, S., Norelli, J., et al. (2012b). Effect of heat treatment on inhibition of Monilinia fructicola and induction of disease resistance in peach fruit. Postharvest Biology and Technology, 65, 61–68.

    CAS  Google Scholar 

  • Lopez-Reyes, J. G., Spadaro, D., Gullino, M. L., & Garibaldi, A. (2011). Integration of essential oils with heat treatment for the control of postharvest rot of peaches. Protezione delle Colture, 2011, 100–101.

    Google Scholar 

  • Lopez-Reyes, J. G., Spadaro, D., Prelle, A., Garibaldi, A., & Gullino, M. L. (2013). Efficacy of plant essential oils on postharvest control of rots caused by fungi on different stone fruits in vivo. Journal of Food Protection, 76, 631–639.

    PubMed  Google Scholar 

  • Luo, Y., & Michailides, T. J. (2001a). Factors affecting latent infection of prune fruit by Monilinia fructicola. Phytopathology, 91, 864–872.

    CAS  PubMed  Google Scholar 

  • Luo, Y., & Michailides, T. J. (2001b). Risk analysis for latent infection of prune by Monilinia fructicola in California. Phytopathology, 91, 1197–1208.

    CAS  PubMed  Google Scholar 

  • Luo, Y., & Michailides, T. J. (2003). Threshold conditions that lead to latent infection to prune fruit rot caused by Monilinia fructigena. Phytopathology, 93, 102–111.

    PubMed  Google Scholar 

  • Luo, Y., Ma, Z. H., & Michailides, T. J. (2001a). Analysis of factors affecting latent infection and sporulation of Monilinia fructicola on prune fruit. Plant Disease, 85, 999–1003.

    Google Scholar 

  • Luo, Y., Morgan, D. P., & Michailides, T. J. (2001b). Risk analysis of brown rot blossom blight of prune caused by Monilinia fructicola. Phytopathology, 91, 759–768.

    CAS  PubMed  Google Scholar 

  • Luo, Y., Michailides, T. J., Morgan, D. P., Krueger, W. H., & Buchner, R. P. (2005). Inoculum dynamics, fruit infection and development of brown rot in prune orchards in California. Phytopathology, 95, 1132–1136.

    PubMed  Google Scholar 

  • Luo, Y., Ma, Z., Reyes, H. C., Morgan, D., & Michailides, T. J. (2007). Quantification of airborne spores of Monilinia fructicola in stone fruit orchards of California using real-time PCR. European Journal of Plant Pathology, 118, 145–154.

    Google Scholar 

  • Ma, Z., Yoshimura, M. A., Holtz, B. A., & Michailides, T. J. (2005). Characterization and PCR-based detection of benzimidazole-resistant isolates of Monilinia laxa in California. Pest Management Science, 61, 449–457.

    CAS  PubMed  Google Scholar 

  • Madrigal, C., & Melgarejo, P. (1994). Mechanisms of action of the antibiotic flavipin on Monilinia laxa and Saccharomyces cerevisiae. Mycological Research, 98, 874–878.

    CAS  Google Scholar 

  • Madrigal, C., Pascual, S., & Melgarejo, P. (1994). Biological control of peach twig blight (Monilinia laxa) with Epicoccum nigrum. Plant Pathology, 43, 554–561.

    Google Scholar 

  • Magan, N. (2006). Ecophysiology of biocontrol agents for improved completence in the phyllophere. In M. J. Bailey, A. K. Lilley, T. M. Timms-Wilson, & P. T. N. Spencer-Phillips (Eds.), Microbial ecology of aerial plant surfaces (pp. 149–164). Wallingford: CAB International.

    Google Scholar 

  • Malandrakis, A. A., Markoglou, A. N., & Ziogas, B. N. (2012). PCR-RFLP detection of the E198A mutation conferring resistance to benzimidazoles in field isolates of Monilinia laxa from Greece. Crop Protection, 39, 11–17.

    CAS  Google Scholar 

  • Malandrakis, A., Koukiasas, N., Veloukas, T., Karaoglanidis, G., & Markoglou, A. (2013). Baseline sensitivity of Monilinia laxa from Greece to fenhexamid and analysis of fenhexamid-resistant mutants. Crop Protection, 46, 13–17.

    CAS  Google Scholar 

  • Mamoci, E., Cavoski, I., Simeone, V., Mondelli, D., Al-Bitar, L., & Caboni, P. (2011). Chemical composition and in vitro activity of plant extracts from Ferula communis and Dittrichia viscosa against postharvest fungi. Molecules, 16, 2609–2625.

    CAS  PubMed  Google Scholar 

  • Mari, M., Casalini, L., & Pratella, G. C. (2004a). Brown rot of stone fruits: Unripe fruits are less susceptible. Rivista di Frutticoltura e di Ortofloricoltura, 66, 60–62.

    Google Scholar 

  • Mari, M., Gregori, R., & Donati, I. (2004b). Postharvest control of Monilinia laxa and Rhizopus stolonifer in stone fruit by peracetic acid. Postharvest Biology and Technology, 33, 319–325.

    CAS  Google Scholar 

  • Mari, M., Torres, R., Casalini, L., Lamarca, N., Mandrin, J. F., Lichou, J., et al. (2007). Control of post-harvest brown rot on nectarine by Epicoccum nigrum and physico-chemical treatments. Journal of the Science of Food and Agriculture, 87, 1271–1277.

    CAS  Google Scholar 

  • Mari, M., Leoni, O., Bernardi, R., Neri, F., & Palmieri, S. (2008). Control of brown rot on stone fruit by synthetic and glucosinolate-derived isothiocyanates. Postharvest Biology and Technology, 47, 61–67.

    CAS  Google Scholar 

  • Mari, M., Martini, C., Guidarelli, M., & Neri, F. (2012a). Postharvest biocontrol of Monilinia laxa, Monilinia fructicola and Monilinia fructigena on stone fruit by two Aureobasidium pullulans strains. Biological Control, 60, 132–140.

    Google Scholar 

  • Mari, M., Martini, C., Spadoni, A., Rouissi, W., & Bertolini, P. (2012b). Biocontrol of apple postharvest decay by Aureobasidium pullulans. Postharvest Biology and Technology, 73, 56–62.

    Google Scholar 

  • Marquenie, D., Michiels, C. W., Geeraerd, A. H., Schenk, A., Soontjens, C., Van Impe, J. F., et al. (2002). Using survival analysis to investigate the effect of UV-C and heat treatment on storage rot of strawberry and sweet cherry. International Journal of Food Microbiology, 73, 187–196.

    CAS  PubMed  Google Scholar 

  • Martínez-García, P. J., Parfitt, D. E., Bostock, R. M., Fresnedo-Ramírez, J., Vazquez-Lobo, A., Ogundiwin, E. A., et al. (2013). Application of genomic and quantitative genetic tools to identify candidate resistance genes for brown rot resistance in Peach. PLoS ONE, 8, e78634.

    PubMed Central  PubMed  Google Scholar 

  • May-De Mio, L. L., Luo, Y., & Michailides, T. J. (2011). Sensitivity of Monilinia fructicola from Brazil to tebuconazole, azoxystrobin and thiophanate-methyl and implications for disease management. Plant Disease, 95, 821–827.

    CAS  Google Scholar 

  • McLaren, G. F., Fraser, J. A., & Lynch, D. G. (1996). An evaluation of sulphur for brown rot control in Central Otago stone fruit. Proceedings of the New Zealand Plant Protection Conference, 49, 32–36.

    Google Scholar 

  • Melgarejo, P., Carrillo, R., & Sagasta, E. M. (1986). Potential for biological control of Monilinia laxa in peach twigs. Crop Protection, 5, 422–426.

    Google Scholar 

  • Mitre, V., Mitre, I., & Roman, I. (2008). Copper-ammoniac phosphate in the treatment of certain stone fruits. Bulletin of university of agricultural sciences and veterinary medicine Cluj-Napoca. .Horticulture, 65, 278–282.

    Google Scholar 

  • Mycobank (2013). Fungal Databases Nomenclature and Species Banks.

  • Nunes, C. (2012). Biological control of postharvest diseases of fruit. European Journal of Plant Pathology, 133, 181–196.

    Google Scholar 

  • Ogawa, J. M., Manji, B. T., Bostock, R. M., Canez, V. M., & Bose, E. A. (1984). Detection and characterization of benomyl-resistant Monilinia laxa on apricots. Plant Disease, 68, 29–31.

    Google Scholar 

  • Pusey, P. L. (1989). Use of Bacillus subtilis and related organisms as biofungicides. Pesticide Science, 27, 133–140.

    Google Scholar 

  • Pusey, P. L., & Wilson, C. L. (1984). Postharvest biological control of stone fruit brown rot by Bacillus subtilis. Plant Disease, 68, 375–378.

    Google Scholar 

  • Pusey, P. L., Wilson, C. L., Hotchkiss, M. W., & Franklin, J. D. (1986). Compatability of Bacillus subtilis for postharvest control of peach brown rot with commercial fruit waxes, Dicloran, and cold-storage conditions. Plant Disease, 70, 587–590.

    Google Scholar 

  • Pusey, P. L., Hotchkiss, M. W., Dulmage, H. T., Baumgardner, R. A., Zehr, E. I., Reilly, C. C., et al. (1988). Pilot tests for commercial production and application of Bacillus subtilis (B-3) for postharvest control of peach brown rot. Plant Disease, 72, 622–626.

    Google Scholar 

  • Ramsdell, D. C., & Ogawa, J. M. (1972). Reduction of Monilinia laxa inoculum potential in almond orchards resulting from dormant benomyl sprays. Phytopathology, 63, 830–836.

    Google Scholar 

  • Robiglio, A., Sosa, M. C., Lutz, M. C., Lopes, C. A., & Sangorrin, M. P. (2011). Yeast biocontrol of fungal spoilage of pears stored at low temperature. International Journal of Food Microbiology, 147, 211–216.

    PubMed  Google Scholar 

  • Romanazzi, G., Nigro, F., & Ippolito, A. (2003). Short hypobaric treatments potentiate the effect of chitosan in reducing storage decay of sweet cherries. Postharvest Biology and Technology, 29, 73–80.

    CAS  Google Scholar 

  • Rungjindamai, N. (2013) Biological control of brown rot disease caused by Monilinia laxa in cherries and plums. PhD Thesis, Kent University, UK

  • Rungjindamai, N., Xu, X.-M., & Jeffries, P. (2013). Identification and characterisation of new microbial strains of biocontrol of Monilinia laxa, the causal agent of brown rot on stone fruit. Agronomy, 3, 685–703.

    CAS  Google Scholar 

  • Saccardo, P. A., & Voglino, P. (1886). Sylloge Fungorum ominium hucusque cognitorum, 4, 35.

    Google Scholar 

  • Sautter, C. K., Brackmann, A., Anese, R. D. O., Weber, A., Rizzatti, M. R., & Pavanello, E. P. (2011). Control of brown rot and physical-chemical characteristics in 'Magnum' peaches post-harvest treated with abiotic elicitors. Revista Ceres, 58, 172–177.

    CAS  Google Scholar 

  • Schena, L., Nigro, F., Pentimone, I., Ligorio, A., & Ippolito, A. (2003). Control of post-harvest rots of sweet cherries and table grapes with endophytic isolates of Aureobasidium pullulans. Postharvest Biology and Technology, 30, 209–220.

    Google Scholar 

  • Schisler, D. A., Slininger, P. J., Behle, R. W., & Jackson, M. A. (2004). Formulation of Bacillus spp. for biological control of plant diseases. Phytopathology, 94, 1267–1271.

    CAS  PubMed  Google Scholar 

  • Sharma, R. R., Singh, D., & Singh, R. (2009). Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: A Review. Biological Control, 50, 205–221.

    Google Scholar 

  • Singh, S. P., Singh, Z., & Swinny, E. E. (2012). Climacteric level during fruit ripening influences lipid peroxidation and enzymatic and non-enzymatic antioxidative systems in Japanese plums (Prunus salicina Lindell). Postharvest Biology and Technology, 65, 22–32.

    CAS  Google Scholar 

  • Sisquella, M., Casals, C., Picouet, P., Vinas, I., Torres, R., & Usall, J. (2013a). Immersion of fruit in water to improve radio frequency treatment to control brown rot in stone fruit. Postharvest Biology and Technology, 80, 31–36.

    Google Scholar 

  • Sisquella, M., Vinas, I., Teixido, N., Picouet, P., & Usall, J. (2013b). Continuous microwave treatment to control postharvest brown rot in stone fruit. Postharvest Biology and Technology, 86, 1–7.

    Google Scholar 

  • Spadoni, A., Neri, F., Bertolini, P., & Mari, M. (2013). Control of Monilinia rots on fruit naturally infected by hot water treatment in commercial trials. Postharvest Biology and Technology, 86, 280–284.

    Google Scholar 

  • Spotts, R. A., Cervantes, L. A., & Facteau, T. J. (2002). Integrated control of brown rot of sweet cherry fruit with a preharvest fungicide, a postharvest yeast, modified atmosphere packaging, and cold storage temperature. Postharvest Biology and Technology, 24, 251–257.

    CAS  Google Scholar 

  • Stevens, C., Khan, V. A., Wilson, C. L., Lu, J. Y., Chalutz, E., & Droby, S. (2005). The effect of fruit orientation of postharvest commodities following low dose ultraviolet light-C treatment on host induced resistance to decay. Crop Protection, 24, 756–759.

    Google Scholar 

  • Szodi, S., Rozsnyay, Z., Rozsa, E., & Turoczi, G. (2008). Susceptibility of sour cherry cultivars to isolates of Monilinia laxa (Ehrenbergh) Saccardo et Voglino. International Journal of Horticultural Science, 14, 83–87.

    Google Scholar 

  • Tamm, L., & Fluckiger, W. (1993). Influence of temperature and moisture on growth, spore production and conidial germination of Monilinia laxa. Phytopathology, 83, 1321–1326.

    Google Scholar 

  • Tamm, L., Minder, C. E., & Fluckiger, W. (1995). Phenological analysis of brown rot blossom blight of sweet cherry caused by Monilinia laxa. Phytopathology, 85, 401–408.

    Google Scholar 

  • Thomidis, T., & Michailides, T. J. (2010). Development and implementation of cost-effective strategies to manage brown rot of peach trees in Imathia, Greece. European Journal of Plant Pathology, 126, 575–582.

    Google Scholar 

  • Thomidis, T., Tsipouridis, C., & Darara, V. (2007). Seasonal variation of nutrient elements in peach fruits (cv. May Crest) and its correlation with development of brown rot (Monilinia laxa). Scientia Horticulturae, 111, 300–303.

    CAS  Google Scholar 

  • Thomidis, T., Michailides, T., & Exadaktylou, E. (2009). Contribution of pathogens to peach fruit rot in northern Greece and their sensitivity to iprodione, carbendazim, thiophanate-methyl and tebuconazole fungicides. Journal of Phytopathology, 157, 194–200.

    CAS  Google Scholar 

  • Tian, S., Fan, Q., Xu, Y., Wang, Y., & Jiang, A. (2001). Evaluation of the use of high CO2 concentrations and cold storage to control of Monilinia fructicola on sweet cherries. Postharvest Biology and Technology, 22, 53–60.

    Google Scholar 

  • USDA (2010). EU-27 stone fruit annual. In: Global Agricultural Information Network Report. R. Hanson, pp 1–15

  • van Brouwershaven, I. R., Bruil, M. L., van Leeuwen, G. C. M., & Kox, L. F. F. (2010). A real-time (TaqMan) PCR assay to differentiate Monilinia fructicola from other brown rot fungi of fruit crops. Plant Pathology, 59, 548–555.

    Google Scholar 

  • van Leeuwen, G. C. M., Stein, A., Holb, I., & Jeger, M. J. (2000). Yield loss in apple caused by Monilinia fructigena (Aderh & Ruhl.) Honey, and spacio-temporal dynamics of disease development. European Journal of Plant Pathology, 106, 519–528.

    Google Scholar 

  • van Leeuwen, G. C. M., Holb, I., & Jeger, M. J. (2002). Factors affecting mummification and sporulation of pome fruit infected by Monilinia fructigena in Dutch orchards. Plant Pathology, 51, 787–793.

    Google Scholar 

  • Villani, S. M., & Cox, K. D. (2010). Confirmation of European brown rot caused by Monilinia laxa on tart cherry, Prunus cerasus, in western New York. Plant Disease, 94, 783–783.

    Google Scholar 

  • Villarino, M., Melgarejo, P., Usall, J., Segarra, J., & De Cal, A. (2010). Primary inoculum sources of Monilinia spp. in Spanish peach orchards and their relative importance in brown rot. Plant Disease, 94, 1048–1054.

    Google Scholar 

  • Villarino, M., Sandin-Espana, P., Melgarejo, P., & De Cal, A. (2011). High chlorogenic and neochlorogenic acid levels in immature peaches reduce Monilinia laxa infection by interfering with fungal melanin biosynthesis. Journal of Agricultural and Food Chemistry, 59, 3205–3213.

    CAS  PubMed  Google Scholar 

  • Villarino, M., Larena, I., Martinez, F., Melgarejo, P., & Cal, D. A. (2012a). Analysis of genetic diversity in Monilinia fructicola from the Ebro Valley in Spain using ISSR and RAPD markers. European Journal of Plant Pathology, 132, 511–524.

    CAS  Google Scholar 

  • Villarino, M., Melgarejo, P., Usall, J., Segarra, J., Lamarca, N., & De Cal, A. (2012b). Secondary inoculum dynamics of Monilinia spp. and relationship to the incidence of postharvest brown rot in peaches and the weather conditions during the growing season. European Journal of Plant Pathology, 133, 585–598.

    Google Scholar 

  • Villarino, M., Egüen, B., Lamarca, N., Segarra, J., Usall, J., Melgarejo, P., et al. (2013). Occurrence of Monilinia laxa and M. fructigena after introduction of M. fructicola in peach orchards in Spain. European Journal of Plant Pathology, 137, 835–845.

    Google Scholar 

  • Weaver, L. O. (1950). Occurrence of blossom blight of stone fruits. Phytopathology, 40, 1136–1153.

    Google Scholar 

  • Weger, J., Schanze, M., Hilber-Bodmer, M., Smits, T. H. M., & Patocchi, A. (2011). First report of the β-tubulin E198A mutation conferring resistance to methyl benzimidazole carbamates in European isolates of Monilinia fructicola. Plant Disease, 95, 497–497.

    Google Scholar 

  • Whetzel, H. H. (1945). A synopsis of the genera and species of the Sclerotiniaceae, a family of stromatic inoperculate discomycetes. Mycologia, 37, 648–714.

    Google Scholar 

  • Willetts, H. J. (1968). The development of stromata of Sclerotinia fructicola and related species: I. Transactions of the British Mycological Society, 51, 625–632.

    Google Scholar 

  • Wisniewski, M. E., Wilson, C. L., Droby, S., Chalutz, E., El Ghaouth, A., & Stevens, C. (2007). Post-harvest biocontrol: New concepts and applications. In C. Vincent, M. S. Goettel, & G. Lazarovits (Eds.), Biological control: A global perspective (pp. 262–273). Florida: CAB International.

    Google Scholar 

  • Wittig, H. P. P., Johnson, K. B., & Pscheidt, J. W. (1997). Effect of epiphytic fungi on brown rot blossom blight and latent infections in sweet cherry. Plant Disease, 81, 383–387.

    Google Scholar 

  • Wormald, H. (1920). The brown rot diseases of fruit trees, with special reference to two biologic forms of Monilia cinerea. Annals of Botany, 34, 143–171.

    CAS  Google Scholar 

  • Xu, X. M., & Jeger, M. J. (2013a). Combined use of two biocontrol agents with different biocontrol mechanisms most likely results in less than expected efficacy in controlling foliar pathogens under fluctuating conditions: a modeling study. Phytopathology, 103, 108–116.

    PubMed  Google Scholar 

  • Xu, X. M., & Jeger, M. J. (2013b). Theoretical modeling suggests that synergy may result from combined use of two biocontrol agents for controlling foliar pathogens under spatial heterogeneous conditions. Phytopathology, 103, 768–775.

    PubMed  Google Scholar 

  • Xu, X., Bertone, C., & Berrie, A. (2007). Effects of wounding, fruit age and wetness duration on the development of cherry brown rot in the UK. Plant Pathology, 56, 114–119.

    Google Scholar 

  • Xu, X.-M., Jeffries, P., Pautasso, M., & Jeger, M. (2011a). Combined use of biocontrol agents to manage plant diseases in theory and practice: a review. Phytopathology, 101, 1024–1031.

    CAS  PubMed  Google Scholar 

  • Xu, X.-M., Jeffries, P., Pautasso, M., & Jeger, M. J. (2011b). A numerical study of combined use of two biocontrol agents with different biocontrol mechanisms in controlling foliar pathogens. Phytopathology, 101, 1032–1044.

    PubMed  Google Scholar 

  • Yanez-Mendizabal, V., Zeriouh, H., Vinas, I., Torres, R., Usall, J., de Vicente, A., et al. (2012). Biological control of peach brown rot (Monilinia spp.) by Bacillus subtilis CPA-8 is based on production of fengycin-like lipopeptides. European Journal of Plant Pathology, 132, 609–619.

    CAS  Google Scholar 

  • Zhang, D., Lopez-Reyes, J. G., Spadaro, D., Garibaldi, A., & Gullino, M. L. (2010a). Efficacy of yeast antagonists used individually or in combination with hot water dipping for control of postharvest brown rot of peaches. Journal of Plant Diseases and Protection, 117, 226–232.

    Google Scholar 

  • Zhang, D., Spadaro, D., Garibaldi, A., & Gullino, M. L. (2010b). Efficacy of the antagonist Aureobasidium pullulans PL5 against postharvest pathogens of peach, apple and plum and its modes of action. Biological Control, 54, 172–180.

    Google Scholar 

  • Zhang, D., Spadaro, D., Garibaldi, A., & Gullino, M. L. (2010c). Selection and evaluation of new antagonists for their efficacy against postharvest brown rot of peaches. Postharvest Biology and Technology, 55, 174–181.

    CAS  Google Scholar 

  • Zhou, T., Schneider, K. E., & Li, X. (2008). Development of biocontrol agents from food microbial isolates for controlling post-harvest peach brown rot caused by Monilinia fructicola. International Journal of Food Microbiology, 126, 180–185.

    PubMed  Google Scholar 

  • Zhu, F., Bryson, P. K., Amiri, A., & Schnabel, G. (2010). First report of the β-tubulin E198A allele for fungicide resistance in Monilinia fructicola from South Carolina. Plant Disease, 94, 1511–1511.

    Google Scholar 

  • Zhu, X., Chen, X., & Guo, L. (2011). Population structure of brown rot fungi on stone fruits in China. Plant Disease, 95, 1284–1291.

    CAS  Google Scholar 

Download references

Acknowledgements

This project was funded under the HortLink (Project No: HL0189) scheme by the Department of Environment and Rural Affairs (Defra). The first author N.R. would also like to thank International Office at the University of Kent for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang-Ming Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rungjindamai, N., Jeffries, P. & Xu, XM. Epidemiology and management of brown rot on stone fruit caused by Monilinia laxa . Eur J Plant Pathol 140, 1–17 (2014). https://doi.org/10.1007/s10658-014-0452-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-014-0452-3

Keywords

Navigation